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Article Info  Abstract 

Article History:  Investigating the inelastic behavior of entire buildings and their structural 
elements under hazard-induced forces is crucial. The Applied Element Method 
(AEM) is a simulation-based analysis technique capable of modeling performance 
from initial loading to eventual failure. This paper presents a comparative analysis 
of AEM and the Finite Element Method (FEM) in simulating the inelastic 
performance of a reinforced concrete beam, with results validated against 
experimental data. The structural analysis was performed using two different 
numerical methods: The AEM, implemented in the Extreme Loading for Structures 
(ELS) software, and the FEM, implemented in ABAQUS. The comparison showed 
that both numerical models closely matched the observed overall structural 
response, especially in the elastic phase. Additionally, both methods accurately 
captured the failure mode, load-deflection behavior, and crack pattern 
development under 6 % error, based on the experimental data. While both 
methods reasonably predicted the elastic moment, FEM estimated a higher plastic 
moment capacity. The findings indicate that both AEM and FEM are effective in 
tracking the linear and nonlinear inelastic performance of the RC beams, 
supporting safe, durable, and cost-effective building designs. 

 
© 2025 MIM Research Group. All rights reserved. 

Received 17 May 2025 

Accepted 21 Oct 2025 

Keywords:  
 

Inelastic behavior; 
Cracking patterns; 
Applied element 
method;  
Finite element method  

1. Introduction 

Understanding the inelastic performance of critical structural elements, such as reinforced 
concrete beams, during seismic incidents remains a key concern in structural engineering. The 
Türkiye-Syria earthquake, which occurred on February 6, 2023, with an initial seismic intensity of 
7.8, was followed nine hours later by a 7.5-magnitude aftershock. This unintentional event resulted 
in approximately 50,000 deaths. This widespread devastation also resulted in the collapse of 
37,066 buildings and critical damage to over 200,000 structures [1]. The destructive structural 
failures observed during the 2023 Türkiye–Syria earthquake highlighted the limitations of 
conventional numerical techniques in predicting progressive collapse and inelastic performance. 
In light of this, advanced numerical methods such as the AEM and FEM offer superior functionality 
for capturing crack propagation and failure mechanisms in reinforced concrete structures, making 
them well-suited for understanding failure mechanisms observed in events like the Türkiye–Syria 
earthquake.  

The AEM and FEM can be utilized to develop effective numerical methods for simulating the 
performance of individual structural elements under various loading conditions, thus providing an 
accurate representation of both elastic and inelastic behavior. AEM’s ability to simulate the 
performance of specific structural elements, like beams under different types of loads, including 
seismic forces, offers valuable insights into failure mechanisms and overall structural strength [2-
4].  
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In AEM, the structure is idealized as an assembly of individual components, created by virtually 
separating the structural elements. These components are connected by two pairs of springs, which 
provide counterforce in both orthogonal and transverse directions [2]. This type of interface allows 
components to separate independently and enables the modeling of cracks and plastic hinges. 
Conversely, the Finite Element Method (FEM), a traditional computational analysis approach, does 
not automatically model component separation unless the locations of plastic hinges and cracks 
are predefined [3]. Furthermore, FEM, based on continuum material techniques, makes it difficult 
to capture the progressive failure of components, highlighting a limitation of this approach [4].  

In contrast, AEM combines the advantages of continuum and Discrete Element Method (DEM) 
approaches, allowing it to serve as a reliable, faster, and easier computational tool for element 
simulation. This advantage makes AEM more effective than other methods in designing safe, 
durable, and cost-efficient buildings [5]. The AEM has proven to be a powerful numerical method 
that bridges the gap between FEM and DEM, offering the capability to simulate both continuum and 
discrete behavior of structures. It has shown significant potential in analyzing various structural 
behaviors, including cracking, crushing, separation, and failure. Developed by Meguro and Tagel-
Din [3], this numerical method is especially effective for simulating the progressive collapse of 
structures because it can automatically detect element separation without requiring remeshing. 

In recent years, various studies have validated the accuracy and applicability of AEM across a wide 
range of structural applications. For example, Meguro and Tagel-Din [4] applied AEM to analyze 
the seismic performance of reinforced concrete (RC) frames and illustrated its superior ability to 
predict progressive failure. This was further supported by the successful study of AEM in modeling 
the complete failure of a three-dimensional RC frame structure under seismic loading [6]. Other 
researchers, Kalliontzis and Stylianidis [7] applied the AEM to investigate the collapse behavior of 
precast RC frame structures, demonstrating its capability to realistically model progressive failure 
sequences and present sudden changes in structural integrity. In a related investigation, Botez, 
Bredean, and Ioani assessed the potential of the AEM for evaluating the progressive collapse of low-
rise reinforced concrete framed structures, highlighting its capability to represent discontinuities 
and sudden changes in structural integrity better than traditional FEM methods [8]. 

The merit of AEM lies in its unique element formulation. Structures are discretized into rigid 
elements integrated by normal and shear springs that model material behavior at the interface level 
[9]. These springs can represent elastic and inelastic behaviors, as well as fracture and separation 
of elements, making AEM well-suited for progressive collapse and failure modeling scenarios. 
Unlike FEM, AEM does not require shape functions or numerical integration to formulate global 
stiffness matrices, thereby simplifying the computational process and enhancing efficiency [10]. 
The implementation of AEM is not limited to RC and masonry structures. It has also been used to 
simulate steel frames, bridges, and even historical heritage buildings, where accurate simulation of 
cracking and failure is crucial.  

Despite its advantages, AEM has its limitations. The numerical method can become computationally 
intensive for large-scale 3D models, and its accuracy heavily depends on mesh size and spring 
stiffness formulation [11]. Despite this, further advancement and integration with commercial 
software like Extreme Loading for Structures (ELS) have made AEM increasingly accessible for 
practical engineering applications. In essence, the AEM has proven to be a reliable and innovative 
tool for simulating structural performance under extreme conditions. With its capacity for 
modeling crack initiation, propagation, and structural failure, AEM continues to gain traction as a 
reliable alternative to conventional numerical methods in structural analysis [4]. The FEM has long 
been the foundation of computational structural mechanics for decades, supported by extensive 
research and development. Its reliability in modeling material nonlinearity, complex boundary 
conditions, and the pre-failure response of structures is well documented in influential literature 
[13-17].  As a mature and widely validated technique, FEM serves as a key benchmark for 
evaluating the performance of new numerical approaches. 

A key challenge, however, lies in simulating a structure's complete lifecycle, from initial loading to 
ultimate collapse and disintegration. While FEM is highly reliable for pre-peak behavior, its 
accuracy can diminish in the post-failure phase due to challenges associated with extensive element 
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distortion and deletion. In contrast, the AEM is specifically designed to maintain accuracy even 
during large displacements and structural separation. The overview of the prevailing literature is 
summarized in Table 1, which rates the method's ability on a scale from excellent, good, to limited 
based on structural behavior from initial loading to complete collapse [2-11]. 

Table 1. Structural behavior from initial loading to complete collapse 

Analysis Phase / 
Method 

Finite Element Method (FEM) Discrete Element 
Method (DEM) 

Applied Element 
Method (AEM) 

Linear Elastic Analysis Excellent Not Primary Use Excellent 

Non-Linear Material 
Behavior 

(Cracking, Yielding, 
Crushing) 

Good 
(Requires user-defined 

constitutive models) 

Limited 
(Challenging for 

concrete continuum) 

Good 
(Automated through 

spring failure) 

Geometric Instability 
(Buckling, Post-

Buckling) 

Good 
(Requires specialized 

analysis steps) 

Not Primary Use Good 
(Captured through 
element instability) 

Structural Separation 
& Collapse 

(Element Separation, 
Debris Formation) 

Limited 
(Challenged by element 

distortion/deletion) 

Inherent Capability 
(Designed for discrete 

bodies) 

Inherent Capability 
(Core strength; 

automated 
separation) 

Post-Collapse 
Behavior 

(Rigid Body Motion, 
Collision) 

Very Limited 
(Not designed for debris 

contact) 

Excellent 
(Explicitly simulates 

collisions) 

Good 
(Models rigid body 
motion & contact) 

 

As the comparative summary illustrates, no single method is universally better; rather, their 
efficacy is highly dependent on the analytical objective. The FEM demonstrates strong capabilities 
for predicting serviceability and initial inelasticity, providing detailed stress distributions within 
the continuum. Conversely, the AEM is specifically designed to excel in the post-failure regime, 
automatically capturing the progression of collapse through element separation. Therefore, 
choosing between FEM and AEM depends on the specific phase of structural behavior being 
studied. FEM is typically preferred for pre-failure analysis, while AEM has a clear advantage in 
collapse simulation. This study provides a comparative evaluation of the AEM and FEM for 
simulating the inelastic behavior of an RC beam, to highlight the strengths and limitations of each 
method. 

The paper is organized into the following sections: methodology, covering experimental aspects in 
sections 2 and 3; the numerical modeling of FEM and AEM is demonstrated in section 4; an 
extensive comparison of results is outlined in section 5; and finally, conclusions are discussed in 
detail in section 6.  

2.  Methodology 

The AEM is often utilized to analyze the inelastic performance of reinforced concrete (RC) beams 
with the assistance of the ELS (Extreme Loading for Structures, version 8.0) program [18]. This tool 
is designed to simulate individual members as well as complete 3D models of buildings composed 
of various materials, including reinforced concrete, steel, wood, and composite materials. It can 
model structures from the initial loading stage through to total collapse under various loading 
types, such as cyclic-static, cyclic-dynamic, harmonic-static, and harmonic-dynamic.  Additionally, 
it can analyze structures under seismic loading conditions. The AEM is validated by comparing its 
results with those from the FEM and experimental data from the literature review [12], both of 
which are used to examine the accuracy of the simulation. The methodology flowchart is illustrated 
in Figure 1 below. 
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3. Experimental Setup 

A reinforced concrete beam of measuring 150 mm x 250 mm x 2000 mm with a compressive 
strength of 25 MPa, made from conventional concrete, is considered for validation purposes as a 
reference study from Azeez, Mohammed Rahil, et al. [12], specimen ID (B1) was selected for 
validation due to its precise geometry, detailed material specifications, and availability of load 
deflection behavior results along with crack patterns. The beam was subjected to a gradually and 
linearly applied monotonic load with an interval of 5 kN until failure, configuring it for quasi-static 
numerical analysis using both FEM and AEM in this paper. The reinforcement used has a tensile 
strength of 550 N/mm². The material properties and geometry of the concrete and bars are 
represented in Table 2 and Figure 2 [12]. 

 
Fig. 1.  Flowchart of the study 
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Table 2. Details of Material Properties 

Property Description Symbol Value Unit 

Concrete     
Compressive 

Strength 
Maximum compressive stress in 

concrete 
fc 25 MPa 

Modulus of 
Elasticity 

Stiffness of concrete material Ec 25000 MPa 

Poisson’s Ratio Ratio of lateral strain to axial strain ν 0.2  

Shear Modulus 
Material's resistance to deformation 

under shear stress. 
Gc 10416.667 MPa 

Density Mass per unit volume of concrete ρ 2400 Kg/m3 

Reinforcing Bar     

Tensile Strength 
The stress at which steel starts 

yielding 
fy 550 MPa 

Modulus of 
Elasticity 

Stiffness of reinforcing steel Es 2 x 105 MPa 

Shear Modulus 
Material's resistance to deformation 

under shear stress. 
Gs 76923.077 MPa 

Poisson’s Ratio Ratio of lateral strain to axial strain ν 0.3  
Diameter of main 

Bars 
Diameter of bars in main 

reinforcement 
d 

2Ø12 bottom, 
2Ø10 top 

mm 

Diameter of 
Stirrups 

Diameter of bars used for shear 
reinforcement 

dst 
Ø8@150mm 

c/c 
mm 

 

The beam geometry, material properties, and reinforcement details provided in Table 2, as well as 
in Figure 2, were used as input parameters for both numerical models, FEM and AEM, to accurately 
replicate the experimental conditions. Maintaining identical properties across all models ensures a 
reliable comparison of the results in terms of critical load and failure mode, load deflection 
behavior, elastic and plastic moments, and crack patterns. 

 

(a) 

 

(b) 

Fig. 2. Geometry of the Beam, (a) Front view, (b) Cross section 

4. Numerical Modeling 

4.1 Finite Element Modeling 

The numerical modeling method is used to study the behavior of elements under various loading 
conditions. FEM has been widely validated as a dependable tool for simulating complex fracture 
mechanisms and structural behavior in various composite materials, including fiber-reinforced 
asphalt [19] and recycled aggregate concrete [20]. Experimental investigations are time-
consuming, costly, and demand a large amount of materials [21]. To overcome these challenges, 
numerical methods such as FEM, DEM, and AEM are developed. ABAQUS/CAE 2020 software is 
used to analyze the beam, which is well-suited for the inelastic behavior of elements, particularly 
in RC elements [22]. It handles everything from basic linear analysis to complex nonlinear 
simulations. With its extensive library, ABAQUS can efficiently model virtually any geometry [23]. 
In continuation of the FEM application, the concrete beam was developed using a 3D solid mesh of 
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20 mm size with C3D8R elements. In contrast, the reinforcement, including both main bars and 
transverse reinforcement (stirrups), was modeled using embedded 2D truss elements. The 
boundary conditions were assigned as simply supported at both ends, and a centralized load was 
assigned at mid-span through a displacement-controlled loading setup. This setup was selected to 
simulate the experimental conditions under a quasi-static loading scenario. The analysis was 
conducted using the Static General step in Abaqus. The concrete damage plasticity (CDP) model 
was adopted for the nonlinear material behavior of concrete with standard parameter values as 
shown in Table 3 [24]. In the numerical analysis of the inelastic behavior of the beam, stress-strain 
data in both compression and tension, including yield stress, yield strain, and inelastic strain, which 
incorporates crack strain, are applied using Figures 3 and 5.  

Table 3. Plasticity flow parameters for concrete damage plasticity 

 

4.1.1 Stress-Strain Behavior of Concrete in Compression 

The behavior of concrete under compression and tension plays a vital role in accurately modeling 
its inelastic response. In finite element modeling, stress-strain relationships define the nonlinear 
characteristics of concrete, including the strain-softening effect in tension and the nonlinear stress-
strain response in compression [25]. Stress-strain data are typically obtained from cube or cylinder 
tests; however, cylinder tests are considered more accurate for inelastic modeling. Analytically can 
be defined using expressions (1), (2), and (3), and Figure 3 [26]. In this study, the stress-strain 
behavior in compression, along with damage parameters, is calculated using Figure 3 and 
expressions (1), (2), and (3), and the results are presented in Figure 4, which presents the 
progression and intensity of damage based on the applied criteria. 

    σ = σcu
kη−η2

1+(k−2)η
          (1) 

    η = ε
εc1⁄                                                                                                                                                        (2) 

    k = 1.05Ec1
εc1

σcu
⁄       (3) 

Where, 𝜎   is stress in the concrete at a given strain (ε), 𝜎𝑐𝑢 is the ultimate compressive strength of 
concrete, k is a dimensionless parameter that depends on the properties of concrete, 𝜂 is a 
dimensionless strain ratio, 𝜀 is the strain in the concrete at the given point, 𝜀𝑐1  is the strain 
corresponding to the peak stress (𝜎𝑐𝑢) in the concrete, 𝐸𝑐1 is the initial tangent modulus of elasticity 
of concrete. 

 
(a) 

 
(b) 

Fig. 3. (a) Stress-Strain curve for concrete under compression and tension (b) Stress-Strain 
Curve in compression [25] 

Plasticity flow characteristics 

Dilation Angle Eccentricity fbo/fco K Viscosity parameter 

34 0.1 1.16 0.666 0.0001 
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(a) 

 
(b) 

Fig. 4.  (a) Stress-Strain behavior data in compression, (b) Damage parameters 

4.1.2 Stress-Strain Behavior of Concrete in Tension 

In tension, concrete behaves in a brittle way. Therefore, the softening behavior of concrete in 
tension can be modeled numerically. Typically, a linear, bilinear, or exponential softening law is 
used in numerical simulations. The softening behavior of concrete in tension is illustrated in Figure 
5. In this study, the softening behavior data along with the damage parameters are calculated using 
the exponential softening law, based on Figure 5(c) and expressions (4) and (5). The estimated data 
are displayed in Figure 6 [25, 26].  

 

(a) 

 

(b) 
 

(c) 

Fig. 5.  (a), (b), and (c) Stress-strain curves illustrating the tensile softening behavior of concrete in 
the inelastic or plastic state 

    σ 𝑓𝑡
⁄ = {1 + (𝑐1

𝑤

𝑤𝑐
)3}𝑒𝑥𝑝 (−𝑐2

𝑤

𝑤𝑐
) −

𝑤

𝑤𝑐
(1 + 𝑐1

3)exp (−𝑐2) (4) 

d = 1 −
𝛔

𝐄𝟎 .𝛆
  (5) 
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Where, σ is the relative stress, 𝑓t is the mean value of tensile strength, c1 and  c2 represent 
constants, 𝑤 is the crack opening, 𝑤𝑐  is the critical crack opening,  d indicates damage parameter, 
E0 is the initial (undamaged) Young’s modulus.  

 

(a) 

 

(b) 

Fig. 6.  (a) Stress-Strain behavior data in tension, (b) Damage parameters 

4.1.3 Mesh Sensitivity in FEM 

A mesh sensitivity analysis was conducted using element sizes of 40 mm, 30 mm, and 20 mm for 
the FEM model. The load deflection curve for the 20 mm mesh closely matched the experimental 
data, accurately reflecting both the initial stiffness and post-cracking behavior. The convergence of 
results between the 30 mm and 20 mm confirmed that the 20 mm mesh offers a good balance 
between computational efficiency and accuracy, and was therefore selected for the study.  The 
results of the mesh sensitivity analysis are presented in Figure 7, which compares the load 
deflection response of the FEM model at different element sizes against the experimental results. 

 

Fig. 7. Mesh sensitivity in FEM 
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Figure 7 demonstrates that the model's response is very sensitive to coarse meshes, but converges 
at 20 mm. The close alignment of the 20 mm mesh result with the experimental data confirms its 
suitability for capturing the beam's inelastic behavior. 

4.2 Applied Element Modeling 

The AEM is a computational method used to simulate structural performance, from elastic response 
to total collapse, by modeling structures as a combination of discrete elements.  AEM discretizes a 
structure into small rigid elements connected by nonlinear spring interfaces. These springs 
represent normal and shear behavior, allowing the simulation of cracking, yielding, separation, and 
collision [27]. 

In this study, the ELS (Extreme Loading for Structures) program is used to model the inelastic 
behavior of an RC beam in terms of deflection, crack patterns, load-displacement curve, elastic with 
plastic moments, and failure type of the reinforced beam. AEM is chosen because of its ability to 
precisely model fracture propagation, excessive distortions, and gradual failure processes, which 
are vital for evaluating the performance of reinforced concrete elements [11]. The following 
formulas, (6) and (7), indicate the interface rigidity in transverse and longitudinal directions of the 
interfacing components. 

𝐾𝑛=
𝐸∗𝑑∗𝑇

𝑎
 (6) 

𝐊𝐬=
𝐆∗𝐝∗𝐓

𝐚
 (7) 

Where Kn and Ks are the orthogonal and transverse stiffnesses, T represents the thickness of the 
component, d indicates the distance among springs, a represents the length of the typical area, E 
and G denote Young’s and shear modulus of the bonded materials, respectively. Figure 8 describes 
the modeling and configuration of the matrix springs using AEM [6]. 

 
(a) 

 
(b) 

 

 
 

(c) 
Fig. 8.  (a) Contact point between two elements, (b) Element connectivity in AEM vs FEM, (c) 

Modeling of structure in AEM [6] 
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The beam was modeled as simply supported, replicating the experimental setup with pinned and 
roller supports at both ends to permit rotation while avoiding vertical translation. The beam 
geometry was based on Figure 2, while the material properties, including concrete compressive 
strength, tensile strength, and modulus of elasticity, were sourced from Table 2. Figure 9 presents 
the RC beam geometry and boundary conditions modeled in the ELS program. Unlike traditional 
FEM meshing, AEM divides the structure into discrete elements based on user-defined divisions in 
three directions (length, height, and width). A non-uniform mesh was applied with approximate 
element sizes of 20.20 mm, 11.90 mm, and 13.64 mm in the x, y, and z directions, respectively. For 
consistency in the comparative analysis, the AEM model was discretized using an element size of 
20 mm along the longitudinal (x) axis, matching the mesh size used in the FEM model.   The interface 
spring stiffnesses were calculated based on the provided formulas (6) and (7), which represent the 
shear and normal rigidities of the interfaces, respectively. Typical parameters used in the AEM 
model are summarized in Table 4 [28].  

Table 4. Parameter definitions in AEM 

Parameters Symbol Value Unit Description 
Young’s 
Modulus 

E 25000 MPa 
Stiffness of material in the axial (normal) 

direction. 
Shear 

Modulus 
G 10416.66 MPa Stiffness of material in shear direction. 

Element 
Thickness 

T 1.515 mm 
Thickness of 2D element, for 3D elements, this 

is replaced by element depth/volume. 
Spring 

Spacing 
dx, dy, dz 

20.2, 11.9, 
13.64 

mm 
Distance between adjacent springs along the 

interface between two elements. 

Area of 
Influence 

ax, ay, az 
162.3, 275.5, 

240.3 
mm2 

Area associated with each spring (related to d 
and T). 

Number of 
Elements (x, y, 

z) 

Nx, Ny, 
Nz 

99, 21, 11 - 
Mesh discretization of the beam in three 

directions (x, y, z). 

Normal Spring 
Stiffness (X, Y, 
Z, directions) 

Kn 
200.9, 578.7, 

440.5 
kN/mm Stiffness against axial deformation 

Shear Spring 
Stiffness (X, Y, 
Z, directions) 

Ks 
83.7, 241.1, 

183.5 
kN/mm Stiffness against shear deformation 

Total Number 
of Elements 

22869 Total elements in model. 

 

The geometry and boundary condition setup for the AEM analysis in ELS is presented in Figure 9. 
The model accurately represents the simply supported constraints and the application of the point 
load at mid-span, as per the experimental setup. 

 

Fig. 9. RC beam geometry and boundary setup as modeled in ELS. 

4.2.1 Mesh Sensitivity in AEM 

Choosing the right mesh density is crucial for achieving results that are independent of 
discretization. The mesh size for the AEM model in this paper was based on the comprehensive 
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sensitivity analysis conducted by Alanani M. et al. [29], which examined the convergence of the ELS 
model for the RC beam. In this model, this led to a total of 22,869 elements, a number that aligns 
well with the stable, converged regime conducted in their sensitivity analysis. Figure 10, recreated 
based on the data from Alanani M. et al., shows the convergence criteria for the ELS model of RC 
beam, guiding the mesh choice in this study. 

 

Fig. 10.  Mesh sensitivity in AEM 

Figure 10. Mesh sensitivity analysis for the AEM model. Beam displacement stabilizes once the total 
number of elements exceeds 10,000. The model in this study, with 22,869 elements, is well within 
this established convergence range. 

5. Results and Discussions 

5.1 Critical Load with Failure Mode 

The cracking load marks the start of tensile fracture in the concrete section, denoting the transition 
from elastic to inelastic behavior in RC beams. In this paper, the average of the two independent 
experimental trials displayed a critical load of 43 kN, while the FEM and AEM produced cracking 
loads of 41 kN and 42 kN, respectively. The small variation (less than 6%) among the three methods 
demonstrates strong alignment in modeling the primary elastic behavior. This alignment suggests 
that both FEM and AEM simulations accurately represent the early-stage flexural behavior, 
including microcrack development and stress redistribution, consistent with Kwak and Kim's 
findings, who highlighted FEM's capability in the elastic zone [30]. 

Concerning the ultimate load in the plastic zone, the average of the two independent experimental 
trials' value was 103 kN. In comparison, FEM and AEM recorded 98 kN and 101 kN, respectively. 
The AEM results showed closer agreement with the experimental data, with a variation of 1.94%, 
compared to 4.8% for FEM. This indicates AEM's improved ability to model nonlinear performance 
beyond cracking and gradual failure, an ability assisted by Salem HM, et al. [31], who verified AEM’s 
validity for RC structures under extreme loading conditions. 

The failure mode was observed across all three models, two independent experimental trials, FEM, 
and AEM. All models experienced only pure flexure, with no signs of shear or torsional failure. This 
result highlights that the geometric configuration and loading setup of the beam accurately induced 
a bending-controlled response, which was closely captured by both numerical simulations. The 
consistency in the failure mode further confirms the accuracy of AEM in simulating real-world 
structural behavior, particularly under inelastic conditions, as noted in earlier investigations [32]. 

These findings highlight that both AEM and FEM can accurately model inelastic performance in 
structural elements with precision in RC beams. AEM shows slightly closer alignment with 
experimental data, especially in the inelastic region. This strengthens its structural compatibility 
for severe damage and collapse analysis in RC structures. The critical loads related to the failure 
modes are shown in Table 5 below. 
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Table 5. Critical load with Failure mode 

Method 
Cracking load 
(kN) in elastic 

zone 

Ultimate load 
(kN) in plastic 

zone 
Mode of Failure 

Experimental (Trial_1-Trial_2) (42-44) (102-105) Pure Flexure 
FEM 41 98 Pure Flexure 
AEM 42 101 Pure Flexure 

Error AEM-FEM 2.33%-4.65% 1.94%-4.8% N/A 
 

5.2 Deflection 

The load deflection behavior of the RC beam was studied under displacement-controlled loading 
conditions using FEM and AEM simulations. The load deflection behavior illustrated in Figure 11, 
observed from the numerical simulations, was correlated with the two independent experimental 
trials' results to validate the accuracy and reliability of the FEM and AEM numerical methods. The 
average data of the two experimental trials highlighted a gradual increase in deflection as the 
applied load increased, reaching a maximum deflection of 12 mm at a load of 103 kN. Both FEM and 
AEM models displayed similar responses, with deflections increasing as the load increases, though 
there is a marginal variation between the numerical models and the experimental data. During 
initial loading stages (10 kN to 50 kN), the FEM deflections are generally slightly less than the 
experimental results, with variations from 0.1 mm to 0.6 mm. This performance continues for the 
AEM model, which highlights deflections marginally higher than the FEM model; however, they 
remain close to the data from the two experimental trials. 

As the load increases above 60 kN, both FEM and AEM simulations show a gradual rise in deflection, 
with the AEM model offering a minor improvement over FEM in terms of prediction reliability. As 
an illustration, at 70 kN, the AEM measures a deflection of 3.1 mm; whereas, the FEM shows 2.6 
mm, which aligns with the average deflection of two experimental trials at 3.9 mm. The difference 
decreases at higher loads, and at 103 kN, the FEM predicts 7.2 mm deflection, while the AEM 
predicts 8.5 mm, compared to the average of the two experimental trials’ outcomes of 12 mm.  The 
model’s accuracy was assessed using the Root Mean Square Error (RMSE) of deflection predictions 
at common load levels. RMSE values of 2.6 mm for FEM and 1.9 mm for AEM indicate that both 
numerical models capture the experimental deflection behavior with good accuracy. 

 

Fig. 11.  Load deflection behavior 
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5.3 Critical Elastic and Plastic Moments 

The numerical simulation was carried out using both the FEM and AEM, demonstrating consistent 
results in the elastic stage, where both methods indicated a critical moment value of 23 kN-m. This 
agreement verifies the reliability of both numerical modeling approaches in simulating the initial 
linear behavior of the RC beam under the applied loads. In contrast, during the plastic step, a slight 
difference was observed: the AEM estimated a plastic moment strength of 50 kN- m, while FEM 
indicated a slightly higher value of 53 kN-m. The 5.6% lower plastic moment in AEM arises from its 
explicit modeling of discrete fracture and post-yield redistribution, unlike FEM's smeared crack 
approach. FEM's higher estimate of the plastic moment capacity comes from continuum 
approximations that do not adequately resolve localized damage.  

Similar patterns have been examined in previous studies, showing the effectiveness of AEM and 
FEM in capturing progressive damage and post-cracking behavior in RC structures [33, 34]. A closer 
match of AEM results with experimental data in the plastic domain, compared to traditional 
numerical modeling with FEM, was reported in a previous study by Mahrous et al. [35].  
Additionally, earlier research has also highlighted that advanced continuum and discrete-based 
numerical models, like AEM, can illustrate the complex mechanisms and failure progression in RC 
members under different loading conditions [36, 37].  The critical elastic and plastic moments of 
the ultimate outcomes observed from both AEM and FEM numerical simulations are summarized 
in Figure 12, clearly illustrating the transition from elastic to plastic behavior and visualizing the 
consistency and relative reliability of both numerical methods in presenting the structural 
responses under increasing load conditions. 

 

Fig. 12.  Critical elastic and plastic moments 

5.4 Crack Patterns 

The crack patterns and deflected shapes observed from the experimental investigation, FEM, and 
AEM numerical simulation results are highlighted to evaluate the reliability of these methods, 
particularly with the AEM approach in presenting the inelastic behavior of the RC beam. 

5.4.1 Experimental Results 

The experimental crack patterns, as described in the literature, are shown in Figure 13 and present 
both the crack propagation and the related deflected shape of the RC beam under increased load 
[12]. These results provide a detailed view of the beam’s failure mode and function as a benchmark 
for supporting numerical models. The failure mechanism of the FEM model is validated by 
analyzing its internal state at ultimate load. The damage progression is examined in Figure 14, 
while the related stress distribution is confirmed in Figure 15. 
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Fig. 13.  Crack patterns and deflected shape [12] 

5.4.2 FEM Results 

5.4.2.1 Crack Pattern and Damage Evolution 

The damage contours at ultimate load are presented in Figure 14. The tensile damage (DAMAGET) 
in Figure 14(a) reveals the pattern of flexural cracking, with values approaching 1.0 at the beam's 
bottom mid-span, indicating the formation of the primary plastic hinge. This is complemented by 
the compressive damage (DAMAGEC) in Figure 14(b), which shows concrete crushing at the top 
compression zone, completing the picture of a typical flexural failure mechanism. 

 
(a) 

 

(b) 

Fig. 14. (a) DAMAGET observed from FEM, deformation scale factor (5) and (b)  DAMAGEC 
observed from FEM, deformation scale factor (5) 

5.4.2.2 Stress Distribution 

The stress contours showing the underlying force data are presented in Figure 15. The maximum 
principal stress (S, Max Principal) in the reinforcement, shown in Figure 15 (a), highlights the high 
tensile zones that led to the cracks. Additionally, the von Mises stress (S, Mises) in the 
reinforcement, shown in Figure 15(b), verifies that the steel has yielded, providing clear evidence 
of a ductile flexural failure mode and confirming the model's accuracy. Together, these contour 
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plots provide a comprehensive validation of the FEM model. The consistent match between the 
damage patterns, stress distributions, and experimental results confirms the model's accuracy in 
simulating the inelastic behavior and failure mechanism of the RC beam. 

 

(a) 

 

(b) 

Fig. 15. (a) Maximum principal stress observed from FEM, deformation scale factor (5)                   
(b) Maximum von Mises stress observed from FEM, deformation scale factor (5) 

5.4.3 AEM Results 

The AEM analysis results illustrate both crack patterns and deflected shapes simultaneously, 
accurately matching the experimental observations. Compared to FEM, AEM does not require 
detailed, predefined material properties for fracture development, as the numerical approach 
automatically allows cracking and crack propagation during the analysis, optimizing the modeling 
procedure while preserving accuracy [10]. The crack patterns and deflected shape of the simulated 
beam using ELS are shown in Figure 16. 

 
Fig. 16.  Crack patterns and deflected shape observed from AEM 

The assessment among numerical methods demonstrates that AEM not only accurately captures 
crack initiation and expansion but also effectively highlights the overall load-deflection behavior. 
These results match with earlier investigations, which similarly confirmed the strengths of AEM in 
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presenting both crack patterns and displacement behavior compared to experimental outcomes 
[38, 39]. 

The correlation between crack patterns and deflected shapes from experimental results, FEM, and 
AEM demonstrates the reliability of numerical methods in analyzing the inelastic behavior of RC 
beams. Literary experimental observations showed both crack patterns and load deflection 
behavior, serving as a benchmark for verification. In FEM simulation using Abaqus software, the 
crack patterns primarily indicated pure flexural performance, which fully aligns with experimental 
observations. 

5.5 Summary of the Results 

To provide a clear overall assessment of the predictive ability of the numerical models, Table 6 
summarizes the key results from the experimental program, the FEM, and the AEM. The table also 
reports the absolute and percentage errors of the numerical results compared to the experimental 
data.  As shown, both FEM and AEM results align well with the experiments, with percentage errors 
typically below 6% across all key parameters. 

Table 6. Summary of the results 

Description 
Experimental 

Trial_1 
Experimental 

Trial_2 
FEM 

Abs. 
Error 
(FEM) 

% 
Error 
(FEM) 

AEM 
Abs. 

Error 
(AEM) 

% 
Error 
(AEM) 

Cracking 
load (kN) in 
elastic zone 

42 44 41 2.00 4.65% 42 1.00 2.33% 

Ultimate 
load (kN) in 
plastic zone 

102 105 98 5.50 5.31% 101 2.50 2.42% 

Global 
deflection 

RMSE (mm) 
- - 2.6 - - 1.9 - - 

Elastic 
moment 
(kN-m) 

- - 23 - - 23 - - 

Plastic 
moment 
(kN-m) 

- - 53 - - 50 - - 

Mode of 
failure 

Pure Flexure Pure Flexure 
Pure 

Flexure 
- - 

Pure 
Flexure 

- - 

 

Overall, both numerical models closely matched the experimental load-deflection response and 
crack patterns, particularly in the elastic region. The FEM model provides reasonable predictions 
of the initial stiffness and yield load but requires careful calibration of parameters, such as the 
concrete damage plasticity, to achieve stable post-failure results. These findings align with previous 
studies, confirming that both FEM and AEM are well-suited for modeling inelastic behavior. 

6. Conclusion 

6.1 Conclusion Based on AEM and FEM 

This paper presents a comprehensive numerical study of the inelastic behavior and failure 
mechanisms of a reinforced concrete beam, employing both the AEM and FEM numerical methods. 
The key finding verifies that reinforced concrete beams have a significant capacity for inelastic 
deformation, clearly demonstrating their capacity to withstand loads up to twice their elastic 
serviceability limit before failure. This result provides accurate numerical validation for 
established experimental observations, strengthening our understanding of ductile structural 
behavior. 

A key insight from this comparative analysis is the accurate simulation of failure modes. Both 
numerical models successfully captured the formation of a plastic hinge at the mid-span under 
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flexural loading, which was validated by experimental results. This failure was characterized by the 
yielding of the longitudinal tensile reinforcement, followed by concrete crushing in the 
compression zone at the mid-span, forming a plastic hinge. Furthermore, the deformation analysis 
validated both models, with close RMSE values of 2.6 mm (FEM) and 1.9 mm (AEM), confirming 
their accuracy in simulating overall structural response. While both methods reliably predicted 
deflection behavior, AEM's marginally lower error demonstrates its particular effectiveness in 
capturing the complete nonlinear path through collapse, whereas FEM remains a strong choice for 
general deformation analysis. 

The evaluation of moment capacity revealed that both FEM and AEM produced identical results of 
25 kN-m in the elastic stage, confirming their equivalent accuracy for linear analysis. In the plastic 
stage, however, a divergence was observed, with AEM predicting a plastic moment of 50 kN-m 
compared to 53 kN-m from FEM. While the absence of experimental data for direct validation 
precludes a definitive accuracy assessment, this discrepancy highlights a meaningful difference in 
how the methods model post-yield behavior and ultimate section capacity under inelastic 
conditions. 

Qualitatively, both the AEM and FEM models successfully replicated the fundamental flexural crack 
pattern observed in the experimental benchmark, confirming their ability to capture the primary 
failure mechanism. For a more detailed quantitative analysis of the internal state, the FEM model 
provided comprehensive data, including stress contours (S, Mises; S, Max Principal) and damage 
metrics (DAMAGET, DAMAGEC), as requested during the review process. These detailed outputs 
from FEM offered valuable insight into the progression of tensile cracking and compressive 
crushing within the concrete continuum. While a direct, equally detailed comparison from AEM 
was not feasible due to software access constraints, the agreement in the global crack pattern 
between both methods and the experiment underscores that, while FEM offers superior detail for 
micro-level stress analysis, AEM remains highly effective for predicting the macro-level structural 
damage and collapse mode. 

6.2 Limitations and Future Work 

This study, while offering valuable insights into the inelastic response of under-reinforced RC 
beams simulated with AEM and FEM, has certain limitations that suggest directions for future 
research. The scope was intentionally limited to under-reinforced beam sections to concentrate on 
a specific ductile failure mechanism; consequently, the applicability findings to over-reinforced or 
balanced sections, which display significantly different brittle failures, remain an open question. 
Additionally, the study was limited to quasi-static, displacement-controlled loading conditions. 

Building on the foundational mesh sensitivity analysis presented here, future work should include 
a more detailed parametric study. This should involve varying key parameters such as shear span 
to depth ratio, concrete strength, and especially the reinforcement ratio to systematically explore 
the performance of AEM and FEM across a wider range of designs. Additionally, it would be 
important to extend the comparison to cyclic and dynamic loading conditions to fully evaluate the 
methods' effectiveness for simulating seismic or impact scenarios. 
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Appendix: Data Tables Used in Numerical Analysis 

Parameters Used in AEM Modelling 

Parameters Symbol Value Unit 
Young’s Modulus E 25000 MPa 

Shear Modulus G 10416.66 MPa 
Element Thickness T 1.515 mm 

Spring Spacing dx, dy, dz 20.2, 11.9, 13.64 mm 
Area of Influence ax, ay, az 162.3, 275.5, 240.3 mm2 

Number of Elements (x, y, z) Nx, Ny, Nz 99, 21, 11 - 

Normal Spring Stiffness (X, Y, Z, 
directions) 

Kn 200.9, 578.7, 440.5 kN/mm 

Shear Spring Stiffness (X, Y, Z, 
directions) 

Ks 83.7, 241.1, 183.5 kN/mm 

Total Number of Elements 22869 

 
Data for Concrete Data for Steel 

M25 Density (Ton/mm3) 2.4E-09 Fe500 Density (Ton/mm3) 7.85E-09 

Elastic 
Young's Modulus (MPa) 25000 

Elastic 
Young’s Modulus 

(MPa) 
2x105 

Poisson’s Ratio 0.2 Poisson’s Ratio 0.3 
 

 

P
la

st
ic

 

Yield Stress (MPa) 550 

P
la

st
ic

 

Plastic Strain 0 

Concrete damage plasticity 

Dilation Angle Eccentricity fb0/fco K 
Viscosity 

parameter 

34 0.1 1.15 0.666 0.0001 
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Compressive Behavior 
Tensile Behavior 

Inelastic Damage 

Yield Stress 
(MPa) 

Strain (%) Parameter, dc 
Inelastic 
Behavior 

Yield 
Stress 
(MPa) 

Cracking 
Strain (%) 

Damage 
Parameter, dt 

Cracking 
Strain (%) 

12.50 0 0 0 3 0 0 0 

14.78 0.0000150 0 1.50E-05 1.6643 0.00028 0.4452 0.000281 

16.90 0.0000400 0 4.00E-05 1.1791 0.00051 0.6069 0.000507 

18.82 0.0000790 0 7.90E-05 0.9233 0.00072 0.6922 0.000718 

20.50 0.0001320 0 0.00013 0.7638 0.00092 0.7453 0.000923 

21.93 0.0002020 0 0.0002 0.6541 0.00112 0.7819 0.001124 

23.08 0.0002900 0 0.00029 0.5738 0.00132 0.8087 0.001324 

23.95 0.0003960 0 0.0004 0.5122 0.00152 0.8292 0.001522 

24.55 0.0005200 0 0.00052 0.4634 0.00172 0.8455 0.00172 

24.89 0.0006610 0 0.00066 0.4237 0.00192 0.8587 0.001917 

25.00 0.0008160 0 0.00082 

  

24.90 0.0009850 0.003936 0.00099 

24.63 0.0011660 0.01492 0.00117 

24.21 0.0013560 0.03174 0.00136 

23.67 0.0015530 0.05319 0.00155 

23.04 0.0017560 0.07821 0.00176 

22.35 0.0019640 0.105814 0.00196 

21.62 0.0021740 0.135175 0.00217 

20.86 0.0023860 0.1655 0.00239 

20.09 0.0025980 0.1964 0.0026 

19.31 0.0028110 0.2274 0.00281 

18.55 0.0030230 0.258 0.00302 

17.80 0.0032350 0.288 0.00324 

17.07 0.0034450 0.3172 0.00345 

16.36 0.0036530 0.3454 0.00365 

15.68 0.0038600 0.3727 0.00386 

15.03 0.0040650 0.3988 0.00407 

14.40 0.0042680 0.4238 0.00427 

13.81 0.0044690 0.4476 0.00447 

13.24 0.0046690 0.4704 0.00467 

12.70 0.0048660 0.492 0.00487 

12.18 0.0050620 0.5126 0.00506 

11.70 0.0052570 0.5321 0.00526 

11.23 0.0054490 0.5507 0.00545 

10.79 0.0056410 0.5683 0.00564 

10.37 0.0058300 0.585 0.00583 

10.00 0.0060100 0.6 0.00601 

9.60 0.0062060 0.6159 0.00621 
9.24 0.0063920 0.6302 0.00639 
8.91 0.0065760 0.6437 0.00658 

8.58 0.0067600 0.6566 0.00676 

8.28 0.0069420 0.6688 0.00694 
7.99 0.0071240 0.68053 0.00712 
7.71 0.0073040 0.6915 0.0073 
7.50 0.0074480 0.7 0.00745 

 


