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Investigating the inelastic behavior of entire buildings and their structural
elements under hazard-induced forces is crucial. The Applied Element Method
(AEM) is a simulation-based analysis technique capable of modeling performance
from initial loading to eventual failure. This paper presents a comparative analysis
of AEM and the Finite Element Method (FEM) in simulating the inelastic
performance of a reinforced concrete beam, with results validated against
experimental data. The structural analysis was performed using two different
numerical methods: The AEM, implemented in the Extreme Loading for Structures
(ELS) software, and the FEM, implemented in ABAQUS. The comparison showed
that both numerical models closely matched the observed overall structural
response, especially in the elastic phase. Additionally, both methods accurately

captured the failure mode, load-deflection behavior, and crack pattern
development under 6 % error, based on the experimental data. While both
methods reasonably predicted the elastic moment, FEM estimated a higher plastic
moment capacity. The findings indicate that both AEM and FEM are effective in
tracking the linear and nonlinear inelastic performance of the RC beams,
supporting safe, durable, and cost-effective building designs.

© 2025 MIM Research Group. All rights reserved.

1. Introduction

Understanding the inelastic performance of critical structural elements, such as reinforced
concrete beams, during seismic incidents remains a key concern in structural engineering. The
Tiirkiye-Syria earthquake, which occurred on February 6, 2023, with an initial seismic intensity of
7.8, was followed nine hours later by a 7.5-magnitude aftershock. This unintentional event resulted
in approximately 50,000 deaths. This widespread devastation also resulted in the collapse of
37,066 buildings and critical damage to over 200,000 structures [1]. The destructive structural
failures observed during the 2023 Tiirkiye-Syria earthquake highlighted the limitations of
conventional numerical techniques in predicting progressive collapse and inelastic performance.
In light of this, advanced numerical methods such as the AEM and FEM offer superior functionality
for capturing crack propagation and failure mechanisms in reinforced concrete structures, making
them well-suited for understanding failure mechanisms observed in events like the Tiirkiye-Syria
earthquake.

The AEM and FEM can be utilized to develop effective numerical methods for simulating the
performance of individual structural elements under various loading conditions, thus providing an
accurate representation of both elastic and inelastic behavior. AEM’s ability to simulate the
performance of specific structural elements, like beams under different types of loads, including
seismic forces, offers valuable insights into failure mechanisms and overall structural strength [2-
4].
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In AEM, the structure is idealized as an assembly of individual components, created by virtually
separating the structural elements. These components are connected by two pairs of springs, which
provide counterforce in both orthogonal and transverse directions [2]. This type of interface allows
components to separate independently and enables the modeling of cracks and plastic hinges.
Conversely, the Finite Element Method (FEM), a traditional computational analysis approach, does
not automatically model component separation unless the locations of plastic hinges and cracks
are predefined [3]. Furthermore, FEM, based on continuum material techniques, makes it difficult
to capture the progressive failure of components, highlighting a limitation of this approach [4].

In contrast, AEM combines the advantages of continuum and Discrete Element Method (DEM)
approaches, allowing it to serve as a reliable, faster, and easier computational tool for element
simulation. This advantage makes AEM more effective than other methods in designing safe,
durable, and cost-efficient buildings [5]. The AEM has proven to be a powerful numerical method
that bridges the gap between FEM and DEM, offering the capability to simulate both continuum and
discrete behavior of structures. It has shown significant potential in analyzing various structural
behaviors, including cracking, crushing, separation, and failure. Developed by Meguro and Tagel-
Din [3], this numerical method is especially effective for simulating the progressive collapse of
structures because it can automatically detect element separation without requiring remeshing.

In recent years, various studies have validated the accuracy and applicability of AEM across a wide
range of structural applications. For example, Meguro and Tagel-Din [4] applied AEM to analyze
the seismic performance of reinforced concrete (RC) frames and illustrated its superior ability to
predict progressive failure. This was further supported by the successful study of AEM in modeling
the complete failure of a three-dimensional RC frame structure under seismic loading [6]. Other
researchers, Kalliontzis and Stylianidis [7] applied the AEM to investigate the collapse behavior of
precast RC frame structures, demonstrating its capability to realistically model progressive failure
sequences and present sudden changes in structural integrity. In a related investigation, Botez,
Bredean, and loani assessed the potential of the AEM for evaluating the progressive collapse of low-
rise reinforced concrete framed structures, highlighting its capability to represent discontinuities
and sudden changes in structural integrity better than traditional FEM methods [8].

The merit of AEM lies in its unique element formulation. Structures are discretized into rigid
elements integrated by normal and shear springs that model material behavior at the interface level
[9]. These springs can represent elastic and inelastic behaviors, as well as fracture and separation
of elements, making AEM well-suited for progressive collapse and failure modeling scenarios.
Unlike FEM, AEM does not require shape functions or numerical integration to formulate global
stiffness matrices, thereby simplifying the computational process and enhancing efficiency [10].
The implementation of AEM is not limited to RC and masonry structures. It has also been used to
simulate steel frames, bridges, and even historical heritage buildings, where accurate simulation of
cracking and failure is crucial.

Despite its advantages, AEM has its limitations. The numerical method can become computationally
intensive for large-scale 3D models, and its accuracy heavily depends on mesh size and spring
stiffness formulation [11]. Despite this, further advancement and integration with commercial
software like Extreme Loading for Structures (ELS) have made AEM increasingly accessible for
practical engineering applications. In essence, the AEM has proven to be a reliable and innovative
tool for simulating structural performance under extreme conditions. With its capacity for
modeling crack initiation, propagation, and structural failure, AEM continues to gain traction as a
reliable alternative to conventional numerical methods in structural analysis [4]. The FEM has long
been the foundation of computational structural mechanics for decades, supported by extensive
research and development. Its reliability in modeling material nonlinearity, complex boundary
conditions, and the pre-failure response of structures is well documented in influential literature
[13-17]. As a mature and widely validated technique, FEM serves as a key benchmark for
evaluating the performance of new numerical approaches.

A key challenge, however, lies in simulating a structure's complete lifecycle, from initial loading to
ultimate collapse and disintegration. While FEM is highly reliable for pre-peak behavior, its
accuracy can diminish in the post-failure phase due to challenges associated with extensive element
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distortion and deletion. In contrast, the AEM is specifically designed to maintain accuracy even
during large displacements and structural separation. The overview of the prevailing literature is
summarized in Table 1, which rates the method's ability on a scale from excellent, good, to limited
based on structural behavior from initial loading to complete collapse [2-11].

Table 1. Structural behavior from initial loading to complete collapse

Analysis Phase / Finite Element Method (FEM) Discrete Element Applied Element
Method Method (DEM) Method (AEM)
Linear Elastic Analysis Excellent Not Primary Use Excellent
Non-Linear Material Good Limited Good
Behavior (Requires user-defined (Challenging for (Automated through
(Cracking, Yielding, constitutive models) concrete continuum) spring failure)
Crushing)
Geometric Instability Good Not Primary Use Good
(Buckling, Post- (Requires specialized (Captured through
Buckling) analysis steps) element instability)
Structural Separation Limited Inherent Capability Inherent Capability
& Collapse (Challenged by element (Designed for discrete (Core strength;
(Element Separation, distortion/deletion) bodies) automated
Debris Formation) separation)
Post-Collapse Very Limited Excellent Good
Behavior (Not designed for debris (Explicitly simulates (Models rigid body
(Rigid Body Motion, contact) collisions) motion & contact)
Collision)

As the comparative summary illustrates, no single method is universally better; rather, their
efficacy is highly dependent on the analytical objective. The FEM demonstrates strong capabilities
for predicting serviceability and initial inelasticity, providing detailed stress distributions within
the continuum. Conversely, the AEM is specifically designed to excel in the post-failure regime,
automatically capturing the progression of collapse through element separation. Therefore,
choosing between FEM and AEM depends on the specific phase of structural behavior being
studied. FEM is typically preferred for pre-failure analysis, while AEM has a clear advantage in
collapse simulation. This study provides a comparative evaluation of the AEM and FEM for
simulating the inelastic behavior of an RC beam, to highlight the strengths and limitations of each
method.

The paper is organized into the following sections: methodology, covering experimental aspects in
sections 2 and 3; the numerical modeling of FEM and AEM is demonstrated in section 4; an
extensive comparison of results is outlined in section 5; and finally, conclusions are discussed in
detail in section 6.

2. Methodology

The AEM is often utilized to analyze the inelastic performance of reinforced concrete (RC) beams
with the assistance of the ELS (Extreme Loading for Structures, version 8.0) program [18]. This tool
is designed to simulate individual members as well as complete 3D models of buildings composed
of various materials, including reinforced concrete, steel, wood, and composite materials. It can
model structures from the initial loading stage through to total collapse under various loading
types, such as cyclic-static, cyclic-dynamic, harmonic-static, and harmonic-dynamic. Additionally,
it can analyze structures under seismic loading conditions. The AEM is validated by comparing its
results with those from the FEM and experimental data from the literature review [12], both of
which are used to examine the accuracy of the simulation. The methodology flowchart is illustrated
in Figure 1 below.
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Comparative Analysis of Inelastic Behaviour of RC Beam
using AEM and FEM
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Fig. 1. Flowchart of the study

3. Experimental Setup

A reinforced concrete beam of measuring 150 mm x 250 mm x 2000 mm with a compressive
strength of 25 MPa, made from conventional concrete, is considered for validation purposes as a
reference study from Azeez, Mohammed Rahil, et al. [12], specimen ID (B1) was selected for
validation due to its precise geometry, detailed material specifications, and availability of load
deflection behavior results along with crack patterns. The beam was subjected to a gradually and
linearly applied monotonic load with an interval of 5 kN until failure, configuring it for quasi-static
numerical analysis using both FEM and AEM in this paper. The reinforcement used has a tensile
strength of 550 N/mm?. The material properties and geometry of the concrete and bars are
represented in Table 2 and Figure 2 [12].
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Table 2. Details of Material Properties

Property Description Symbol Value Unit
Concrete
Compressive Maximum compressive stress in £, 25 MPa
Strength concrete
Modul‘u‘s of Stiffness of concrete material Ec 25000 MPa
Elasticity
Poisson’s Ratio Ratio of lateral strain to axial strain v 0.2
Shear Modulus Material's resistance to deformation G, 10416.667 MPa

under shear stress.
Density Mass per unit volume of concrete p 2400 Kg/m3

Reinforcing Bar
The stress at which steel starts

Tensile Strength C o fy 550 MPa
yielding
Modul_u_s of Stiffness of reinforcing steel Es 2x105 MPa
Elasticity
Shear Modulus Material's resistance to deformation G, 76923.077 MPa
under shear stress.
Poisson’s Ratio Ratio of lateral strain to axial strain v 0.3
Diameter of main Diameter of bars in main d 2312 bottom, mm
Bars reinforcement 210 top
Diameter of Diameter of bars used for shear #A8@150mm
. : dst mm
Stirrups reinforcement c/c

The beam geometry, material properties, and reinforcement details provided in Table 2, as well as
in Figure 2, were used as input parameters for both numerical models, FEM and AEM, to accurately
replicate the experimental conditions. Maintaining identical properties across all models ensures a
reliable comparison of the results in terms of critical load and failure mode, load deflection
behavior, elastic and plastic moments, and crack patterns.

@8mm @150mm C/C 2010,A-11 2012,A-11
4 7 / ®'L=°zouomn77\{_ uzw’ﬁmui'g)
L AN

[T |
]
NN o
| 41! | 3

T—z: 1950 25~

2000
All dimensions are In "mm"

(a)

Fig. 2. Geometry of the Beam, (a) Front view, (b) Cross section

4. Numerical Modeling
4.1 Finite Element Modeling

The numerical modeling method is used to study the behavior of elements under various loading
conditions. FEM has been widely validated as a dependable tool for simulating complex fracture
mechanisms and structural behavior in various composite materials, including fiber-reinforced
asphalt [19] and recycled aggregate concrete [20]. Experimental investigations are time-
consuming, costly, and demand a large amount of materials [21]. To overcome these challenges,
numerical methods such as FEM, DEM, and AEM are developed. ABAQUS/CAE 2020 software is
used to analyze the beam, which is well-suited for the inelastic behavior of elements, particularly
in RC elements [22]. It handles everything from basic linear analysis to complex nonlinear
simulations. With its extensive library, ABAQUS can efficiently model virtually any geometry [23].
In continuation of the FEM application, the concrete beam was developed using a 3D solid mesh of
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20 mm size with C3D8R elements. In contrast, the reinforcement, including both main bars and
transverse reinforcement (stirrups), was modeled using embedded 2D truss elements. The
boundary conditions were assigned as simply supported at both ends, and a centralized load was
assigned at mid-span through a displacement-controlled loading setup. This setup was selected to
simulate the experimental conditions under a quasi-static loading scenario. The analysis was
conducted using the Static General step in Abaqus. The concrete damage plasticity (CDP) model
was adopted for the nonlinear material behavior of concrete with standard parameter values as
shown in Table 3 [24]. In the numerical analysis of the inelastic behavior of the beam, stress-strain
data in both compression and tension, including yield stress, yield strain, and inelastic strain, which
incorporates crack strain, are applied using Figures 3 and 5.

Table 3. Plasticity flow parameters for concrete damage plasticity

Plasticity flow characteristics

Dilation Angle Eccentricity foo/fco K Viscosity parameter
34 0.1 1.16 0.666 0.0001

4.1.1 Stress-Strain Behavior of Concrete in Compression

The behavior of concrete under compression and tension plays a vital role in accurately modeling
its inelastic response. In finite element modeling, stress-strain relationships define the nonlinear
characteristics of concrete, including the strain-softening effect in tension and the nonlinear stress-
strain response in compression [25]. Stress-strain data are typically obtained from cube or cylinder
tests; however, cylinder tests are considered more accurate for inelastic modeling. Analytically can
be defined using expressions (1), (2), and (3), and Figure 3 [26]. In this study, the stress-strain
behavior in compression, along with damage parameters, is calculated using Figure 3 and
expressions (1), (2), and (3), and the results are presented in Figure 4, which presents the
progression and intensity of damage based on the applied criteria.

_ kn-n?
0= Ocu T (12 (1)
n= E/scl (2)
k = 1.05E; “Y/g, (3)

Where, o is stress in the concrete at a given strain (€), g, is the ultimate compressive strength of
concrete, k is a dimensionless parameter that depends on the properties of concrete, 1 is a
dimensionless strain ratio, ¢ is the strain in the concrete at the given point, ¢.; is the strain
corresponding to the peak stress (g,,) in the concrete, E_; is the initial tangent modulus of elasticity
of concrete.
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Fig. 3. (a) Stress-Strain curve for concrete under compression and tension (b) Stress-Strain
Curve in compression [25]
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Fig. 4. (a) Stress-Strain behavior data in compression, (b) Damage parameters

4.1.2 Stress-Strain Behavior of Concrete in Tension

In tension, concrete behaves in a brittle way. Therefore, the softening behavior of concrete in
tension can be modeled numerically. Typically, a linear, bilinear, or exponential softening law is
used in numerical simulations. The softening behavior of concrete in tension is illustrated in Figure
5. In this study, the softening behavior data along with the damage parameters are calculated using
the exponential softening law, based on Figure 5(c) and expressions (4) and (5). The estimated data

are displayed in Figure 6 [25, 26].
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Fig. 5. (a), (b), and (c) Stress-strain curves illustrating the tensile softening behavior of concrete in
the inelastic or plastic state
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Where, o is the relative stress, f; is the mean value of tensile strength, c; and c, represent
constants, w is the crack opening, w, is the critical crack opening, d indicates damage parameter,
E, is the initial (undamaged) Young’'s modulus.
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Fig. 6. (a) Stress-Strain behavior data in tension, (b) Damage parameters

4.1.3 Mesh Sensitivity in FEM

A mesh sensitivity analysis was conducted using element sizes of 40 mm, 30 mm, and 20 mm for
the FEM model. The load deflection curve for the 20 mm mesh closely matched the experimental
data, accurately reflecting both the initial stiffness and post-cracking behavior. The convergence of
results between the 30 mm and 20 mm confirmed that the 20 mm mesh offers a good balance
between computational efficiency and accuracy, and was therefore selected for the study. The
results of the mesh sensitivity analysis are presented in Figure 7, which compares the load
deflection response of the FEM model at different element sizes against the experimental results.

Mesh Sensitivity
120
100
Z 80 |
= Experimental
< 60
s 20mm Mesh
= 40
———30mm Mesh
20 ——40mm Mesh
0
0 5 10 15

Displacement (mm)

Fig. 7. Mesh sensitivity in FEM
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Figure 7 demonstrates that the model's response is very sensitive to coarse meshes, but converges
at 20 mm. The close alignment of the 20 mm mesh result with the experimental data confirms its
suitability for capturing the beam's inelastic behavior.

4.2 Applied Element Modeling

The AEM is a computational method used to simulate structural performance, from elastic response
to total collapse, by modeling structures as a combination of discrete elements. AEM discretizes a
structure into small rigid elements connected by nonlinear spring interfaces. These springs
represent normal and shear behavior, allowing the simulation of cracking, yielding, separation, and
collision [27].

In this study, the ELS (Extreme Loading for Structures) program is used to model the inelastic
behavior of an RC beam in terms of deflection, crack patterns, load-displacement curve, elastic with
plastic moments, and failure type of the reinforced beam. AEM is chosen because of its ability to
precisely model fracture propagation, excessive distortions, and gradual failure processes, which
are vital for evaluating the performance of reinforced concrete elements [11]. The following
formulas, (6) and (7), indicate the interface rigidity in transverse and longitudinal directions of the
interfacing components.

Exd*T
Kn= 2 (6)
K=" (7)

Where K, and K; are the orthogonal and transverse stiffnesses, T represents the thickness of the
component, d indicates the distance among springs, a represents the length of the typical area, E
and G denote Young’s and shear modulus of the bonded materials, respectively. Figure 8 describes
the modeling and configuration of the matrix springs using AEM [6].

(b)

Concrete spring

y 4

e R AT AN

b .7 AN \Volume represented by
MA normal spring and 2
MA ings

—
a

Reinforcing bar spring

(c)
Fig. 8. (a) Contact point between two elements, (b) Element connectivity in AEM vs FEM, (c)
Modeling of structure in AEM [6]
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The beam was modeled as simply supported, replicating the experimental setup with pinned and
roller supports at both ends to permit rotation while avoiding vertical translation. The beam
geometry was based on Figure 2, while the material properties, including concrete compressive
strength, tensile strength, and modulus of elasticity, were sourced from Table 2. Figure 9 presents
the RC beam geometry and boundary conditions modeled in the ELS program. Unlike traditional
FEM meshing, AEM divides the structure into discrete elements based on user-defined divisions in
three directions (length, height, and width). A non-uniform mesh was applied with approximate
element sizes of 20.20 mm, 11.90 mm, and 13.64 mm in the x, y, and z directions, respectively. For
consistency in the comparative analysis, the AEM model was discretized using an element size of
20 mm along the longitudinal (x) axis, matching the mesh size used in the FEM model. The interface
spring stiffnesses were calculated based on the provided formulas (6) and (7), which represent the
shear and normal rigidities of the interfaces, respectively. Typical parameters used in the AEM
model are summarized in Table 4 [28].

Table 4. Parameter definitions in AEM

Parameters Symbol Value Unit Description
Young’s E 25000 MPa Stiffness of mater.lal in the axial (normal)
Modulus direction.
Mso}::lial{ls G 10416.66 MPa Stiffness of material in shear direction.
Element T 1515 mm Thickness of 2D element, for 3D elements, this
Thickness ' is replaced by element depth/volume.
Spring de do d 20.2,11.9, mm Distance between adjacent springs along the
Spacing B 13.64 interface between two elements.
Area of A 2v 2 162.3,275.5, mm? Area associated with each spring (related to d
Influence R 240.3 and T).
Number of . - .
Nx, Ny, Mesh discretization of the beam in three
Elements (%, y, 99, 21,11 - . .
2) N directions (x, y, z).
Normal Spring
Stiffness (X, Y, Ka 200494’ (;5 ;8'7’ kN/mm Stiffness against axial deformation
Z, directions) '
Shear Spring
Stiffness (X, Y, Ks 83': é§451'1’ KN/mm Stiffness against shear deformation
Z, directions) ’
Total Number 22869 Total elements in model.
of Elements

The geometry and boundary condition setup for the AEM analysis in ELS is presented in Figure 9.
The model accurately represents the simply supported constraints and the application of the point
load at mid-span, as per the experimental setup.

o

(i il
Fig. 9. RC beam geometry and boundary setup as modeled in ELS.

4.2.1 Mesh Sensitivity in AEM

Choosing the right mesh density is crucial for achieving results that are independent of
discretization. The mesh size for the AEM model in this paper was based on the comprehensive

10
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sensitivity analysis conducted by Alanani M. et al. [29], which examined the convergence of the ELS
model for the RC beam. In this model, this led to a total of 22,869 elements, a number that aligns
well with the stable, converged regime conducted in their sensitivity analysis. Figure 10, recreated
based on the data from Alanani M. et al., shows the convergence criteria for the ELS model of RC
beam, guiding the mesh choice in this study.

Mesh sensitivity

[ e = S
[ A - R )

Displacement (mm)
[ = S SR ST Y
O R N W b

0 5000 10000 15000 20000 25000 30000 35000
Number of elements

Fig. 10. Mesh sensitivity in AEM

Figure 10. Mesh sensitivity analysis for the AEM model. Beam displacement stabilizes once the total
number of elements exceeds 10,000. The model in this study, with 22,869 elements, is well within
this established convergence range.

5. Results and Discussions
5.1 Critical Load with Failure Mode

The cracking load marks the start of tensile fracture in the concrete section, denoting the transition
from elastic to inelastic behavior in RC beams. In this paper, the average of the two independent
experimental trials displayed a critical load of 43 kN, while the FEM and AEM produced cracking
loads of 41 kN and 42 kN, respectively. The small variation (less than 6%) among the three methods
demonstrates strong alignment in modeling the primary elastic behavior. This alignment suggests
that both FEM and AEM simulations accurately represent the early-stage flexural behavior,
including microcrack development and stress redistribution, consistent with Kwak and Kim's
findings, who highlighted FEM's capability in the elastic zone [30].

Concerning the ultimate load in the plastic zone, the average of the two independent experimental
trials' value was 103 kN. In comparison, FEM and AEM recorded 98 kN and 101 kN, respectively.
The AEM results showed closer agreement with the experimental data, with a variation of 1.94%,
compared to 4.8% for FEM. This indicates AEM's improved ability to model nonlinear performance
beyond cracking and gradual failure, an ability assisted by Salem HM, et al. [31], who verified AEM’s
validity for RC structures under extreme loading conditions.

The failure mode was observed across all three models, two independent experimental trials, FEM,
and AEM. All models experienced only pure flexure, with no signs of shear or torsional failure. This
result highlights that the geometric configuration and loading setup of the beam accurately induced
a bending-controlled response, which was closely captured by both numerical simulations. The
consistency in the failure mode further confirms the accuracy of AEM in simulating real-world
structural behavior, particularly under inelastic conditions, as noted in earlier investigations [32].

These findings highlight that both AEM and FEM can accurately model inelastic performance in
structural elements with precision in RC beams. AEM shows slightly closer alignment with
experimental data, especially in the inelastic region. This strengthens its structural compatibility
for severe damage and collapse analysis in RC structures. The critical loads related to the failure
modes are shown in Table 5 below.

11
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Table 5. Critical load with Failure mode

Crackingload  Ultimate load

Method (kN) in elastic ~ (kN) in plastic Mode of Failure
zone zone
Experimental (Trial_1-Trial_2) (42-44) (102-105) Pure Flexure
FEM 41 98 Pure Flexure
AEM 42 101 Pure Flexure
Error AEM-FEM 2.33%-4.65% 1.94%-4.8% N/A

5.2 Deflection

The load deflection behavior of the RC beam was studied under displacement-controlled loading
conditions using FEM and AEM simulations. The load deflection behavior illustrated in Figure 11,
observed from the numerical simulations, was correlated with the two independent experimental
trials' results to validate the accuracy and reliability of the FEM and AEM numerical methods. The
average data of the two experimental trials highlighted a gradual increase in deflection as the
applied load increased, reaching a maximum deflection of 12 mm at a load of 103 kN. Both FEM and
AEM models displayed similar responses, with deflections increasing as the load increases, though
there is a marginal variation between the numerical models and the experimental data. During
initial loading stages (10 kN to 50 kN), the FEM deflections are generally slightly less than the
experimental results, with variations from 0.1 mm to 0.6 mm. This performance continues for the
AEM model, which highlights deflections marginally higher than the FEM model; however, they
remain close to the data from the two experimental trials.

As theload increases above 60 kN, both FEM and AEM simulations show a gradual rise in deflection,
with the AEM model offering a minor improvement over FEM in terms of prediction reliability. As
an illustration, at 70 kN, the AEM measures a deflection of 3.1 mm; whereas, the FEM shows 2.6
mm, which aligns with the average deflection of two experimental trials at 3.9 mm. The difference
decreases at higher loads, and at 103 kN, the FEM predicts 7.2 mm deflection, while the AEM
predicts 8.5 mm, compared to the average of the two experimental trials’ outcomes of 12 mm. The
model’s accuracy was assessed using the Root Mean Square Error (RMSE) of deflection predictions
at common load levels. RMSE values of 2.6 mm for FEM and 1.9 mm for AEM indicate that both
numerical models capture the experimental deflection behavior with good accuracy.

Load Deflection Behavior
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Fig. 11. Load deflection behavior
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5.3 Critical Elastic and Plastic Moments

The numerical simulation was carried out using both the FEM and AEM, demonstrating consistent
results in the elastic stage, where both methods indicated a critical moment value of 23 kN-m. This
agreement verifies the reliability of both numerical modeling approaches in simulating the initial
linear behavior of the RC beam under the applied loads. In contrast, during the plastic step, a slight
difference was observed: the AEM estimated a plastic moment strength of 50 kN- m, while FEM
indicated a slightly higher value of 53 kN-m. The 5.6% lower plastic moment in AEM arises from its
explicit modeling of discrete fracture and post-yield redistribution, unlike FEM's smeared crack
approach. FEM's higher estimate of the plastic moment capacity comes from continuum
approximations that do not adequately resolve localized damage.

Similar patterns have been examined in previous studies, showing the effectiveness of AEM and
FEM in capturing progressive damage and post-cracking behavior in RC structures [33, 34]. A closer
match of AEM results with experimental data in the plastic domain, compared to traditional
numerical modeling with FEM, was reported in a previous study by Mahrous et al. [35].
Additionally, earlier research has also highlighted that advanced continuum and discrete-based
numerical models, like AEM, can illustrate the complex mechanisms and failure progression in RC
members under different loading conditions [36, 37]. The critical elastic and plastic moments of
the ultimate outcomes observed from both AEM and FEM numerical simulations are summarized
in Figure 12, clearly illustrating the transition from elastic to plastic behavior and visualizing the
consistency and relative reliability of both numerical methods in presenting the structural
responses under increasing load conditions.

Critical Elastic and Plastic Moments
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Fig. 12. Critical elastic and plastic moments

5.4 Crack Patterns

The crack patterns and deflected shapes observed from the experimental investigation, FEM, and
AEM numerical simulation results are highlighted to evaluate the reliability of these methods,
particularly with the AEM approach in presenting the inelastic behavior of the RC beam.

5.4.1 Experimental Results

The experimental crack patterns, as described in the literature, are shown in Figure 13 and present
both the crack propagation and the related deflected shape of the RC beam under increased load
[12]. These results provide a detailed view of the beam’s failure mode and function as a benchmark
for supporting numerical models. The failure mechanism of the FEM model is validated by
analyzing its internal state at ultimate load. The damage progression is examined in Figure 14,
while the related stress distribution is confirmed in Figure 15.
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Fig. 13. Crack patterns and deflected shape [12]

5.4.2 FEM Results
5.4.2.1 Crack Pattern and Damage Evolution

The damage contours at ultimate load are presented in Figure 14. The tensile damage (DAMAGET)
in Figure 14(a) reveals the pattern of flexural cracking, with values approaching 1.0 at the beam's
bottom mid-span, indicating the formation of the primary plastic hinge. This is complemented by
the compressive damage (DAMAGEC) in Figure 14(b), which shows concrete crushing at the top
compression zone, completing the picture of a typical flexural failure mechanism.

+2.147e-01
+1.431e-01
+7.156e-02
+0.000e+00

+5 e-02
+0.000e+00

(b)

Fig. 14. (a) DAMAGET observed from FEM, deformation scale factor (5) and (b) DAMAGEC
observed from FEM, deformation scale factor (5)

5.4.2.2 Stress Distribution

The stress contours showing the underlying force data are presented in Figure 15. The maximum
principal stress (S, Max Principal) in the reinforcement, shown in Figure 15 (a), highlights the high
tensile zones that led to the cracks. Additionally, the von Mises stress (S, Mises) in the
reinforcement, shown in Figure 15(b), verifies that the steel has yielded, providing clear evidence
of a ductile flexural failure mode and confirming the model's accuracy. Together, these contour
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plots provide a comprehensive validation of the FEM model. The consistent match between the
damage patterns, stress distributions, and experimental results confirms the model's accuracy in
simulating the inelastic behavior and failure mechanism of the RC beam.

+5.1(
+4.640e+0
+4.176e+02

(b)
Fig. 15. (a) Maximum principal stress observed from FEM, deformation scale factor (5)
(b) Maximum von Mises stress observed from FEM, deformation scale factor (5)

5.4.3 AEM Results

The AEM analysis results illustrate both crack patterns and deflected shapes simultaneously,
accurately matching the experimental observations. Compared to FEM, AEM does not require
detailed, predefined material properties for fracture development, as the numerical approach
automatically allows cracking and crack propagation during the analysis, optimizing the modeling
procedure while preserving accuracy [10]. The crack patterns and deflected shape of the simulated
beam using ELS are shown in Figure 16.

Fig. 16. Crack patterns and deflected shape observed from AEM

The assessment among numerical methods demonstrates that AEM not only accurately captures
crack initiation and expansion but also effectively highlights the overall load-deflection behavior.
These results match with earlier investigations, which similarly confirmed the strengths of AEM in
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presenting both crack patterns and displacement behavior compared to experimental outcomes
[38, 39].

The correlation between crack patterns and deflected shapes from experimental results, FEM, and
AEM demonstrates the reliability of numerical methods in analyzing the inelastic behavior of RC
beams. Literary experimental observations showed both crack patterns and load deflection
behavior, serving as a benchmark for verification. In FEM simulation using Abaqus software, the
crack patterns primarily indicated pure flexural performance, which fully aligns with experimental
observations.

5.5 Summary of the Results

To provide a clear overall assessment of the predictive ability of the numerical models, Table 6
summarizes the key results from the experimental program, the FEM, and the AEM. The table also
reports the absolute and percentage errors of the numerical results compared to the experimental
data. As shown, both FEM and AEM results align well with the experiments, with percentage errors
typically below 6% across all key parameters.

Table 6. Summary of the results

Abs. % Abs. %
FEM Error Error AEM Error Error
(FEM) (FEM) (AEM) (AEM)

Experimental Experimental

Description Trial_1 Trial 2

Cracking
load (kN) in 42 44 41 2.00 4.65% 42 1.00 2.33%
elastic zone
Ultimate
load (kN) in 102 105 98 5.50 5.31% 101 2.50 2.42%
plastic zone
Global
deflection - - 2.6 - - 1.9 - -
RMSE (mm)
Elastic
moment - - 23 - - 23 - -
(kN-m)
Plastic
moment - - 53 - - 50 - -
(kN-m)
Mode of Pure Pure

failure Pure Flexure  Pure Flexure Flexure - - Flexure - -

Overall, both numerical models closely matched the experimental load-deflection response and
crack patterns, particularly in the elastic region. The FEM model provides reasonable predictions
of the initial stiffness and yield load but requires careful calibration of parameters, such as the
concrete damage plasticity, to achieve stable post-failure results. These findings align with previous
studies, confirming that both FEM and AEM are well-suited for modeling inelastic behavior.

6. Conclusion
6.1 Conclusion Based on AEM and FEM

This paper presents a comprehensive numerical study of the inelastic behavior and failure
mechanisms of a reinforced concrete beam, employing both the AEM and FEM numerical methods.
The key finding verifies that reinforced concrete beams have a significant capacity for inelastic
deformation, clearly demonstrating their capacity to withstand loads up to twice their elastic
serviceability limit before failure. This result provides accurate numerical validation for
established experimental observations, strengthening our understanding of ductile structural
behavior.

A key insight from this comparative analysis is the accurate simulation of failure modes. Both
numerical models successfully captured the formation of a plastic hinge at the mid-span under
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flexural loading, which was validated by experimental results. This failure was characterized by the
yielding of the longitudinal tensile reinforcement, followed by concrete crushing in the
compression zone at the mid-span, forming a plastic hinge. Furthermore, the deformation analysis
validated both models, with close RMSE values of 2.6 mm (FEM) and 1.9 mm (AEM), confirming
their accuracy in simulating overall structural response. While both methods reliably predicted
deflection behavior, AEM's marginally lower error demonstrates its particular effectiveness in
capturing the complete nonlinear path through collapse, whereas FEM remains a strong choice for
general deformation analysis.

The evaluation of moment capacity revealed that both FEM and AEM produced identical results of
25 kN-m in the elastic stage, confirming their equivalent accuracy for linear analysis. In the plastic
stage, however, a divergence was observed, with AEM predicting a plastic moment of 50 kN-m
compared to 53 KN-m from FEM. While the absence of experimental data for direct validation
precludes a definitive accuracy assessment, this discrepancy highlights a meaningful difference in
how the methods model post-yield behavior and ultimate section capacity under inelastic
conditions.

Qualitatively, both the AEM and FEM models successfully replicated the fundamental flexural crack
pattern observed in the experimental benchmark, confirming their ability to capture the primary
failure mechanism. For a more detailed quantitative analysis of the internal state, the FEM model
provided comprehensive data, including stress contours (S, Mises; S, Max Principal) and damage
metrics (DAMAGET, DAMAGEC), as requested during the review process. These detailed outputs
from FEM offered valuable insight into the progression of tensile cracking and compressive
crushing within the concrete continuum. While a direct, equally detailed comparison from AEM
was not feasible due to software access constraints, the agreement in the global crack pattern
between both methods and the experiment underscores that, while FEM offers superior detail for
micro-level stress analysis, AEM remains highly effective for predicting the macro-level structural
damage and collapse mode.

6.2 Limitations and Future Work

This study, while offering valuable insights into the inelastic response of under-reinforced RC
beams simulated with AEM and FEM, has certain limitations that suggest directions for future
research. The scope was intentionally limited to under-reinforced beam sections to concentrate on
a specific ductile failure mechanism; consequently, the applicability findings to over-reinforced or
balanced sections, which display significantly different brittle failures, remain an open question.
Additionally, the study was limited to quasi-static, displacement-controlled loading conditions.

Building on the foundational mesh sensitivity analysis presented here, future work should include
a more detailed parametric study. This should involve varying key parameters such as shear span
to depth ratio, concrete strength, and especially the reinforcement ratio to systematically explore
the performance of AEM and FEM across a wider range of designs. Additionally, it would be
important to extend the comparison to cyclic and dynamic loading conditions to fully evaluate the
methods' effectiveness for simulating seismic or impact scenarios.

References

[1] Yon B, Dedeoglu i0, Yetkin M, Erkek H, Calayir Y. Evaluation of the seismic response of reinforced concrete
buildings in the light of lessons learned from the February 6, 2023, Kahramanmaras, Tiirkiye earthquake
sequences. Natural Hazards. 2025 Jan;121(1):873-909. https://doi.org/10.1007 /s11069-024-06859-9

[2] Meguro K, Tagel-Din HS. applied element method used for large displacement structural analysis. Journal
of Natural Disaster Science. 2002 Jun 1;24(1):25-34. https://jsnds.org/jnds/24_1_3.pdf

[3] Meguro K. Fracture Behavior Analysis of Structures Using A New Efficient and Simple Technique.
Production Research: Bulletin of the Institute of Industrial Science, University of Tokyo, Journal of the
Institute of Industrial Science, The University of Tokyo. 1997;49(11):577-80.

[4] Meguro K, Tagel-Din H. Applied element simulation of RC structures under cyclic loading. Journal of
Structural  Engineering. 2001 Nov;127(11):1295-305. https://doi.org/10.1061/(ASCE)0733-
9445(2001)127:11(1295)

[5] Tagel-Din H, Rahman NA. The Applied Element Method: the ultimate analysis of progressive collapse.
STRUCTURE magazine. 2006 Apr; 4:30-3.

17


https://doi.org/10.1007/s11069-024-06859-9
https://jsnds.org/jnds/24_1_3.pdf
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1295)
https://doi.org/10.1061/(ASCE)0733-9445(2001)127:11(1295)

Azizi and Yajdani / Research on Engineering Structures & Materials x(x) (xxxx) xX-xx

[6] Meguro K, Tagel-Din H. Applied element method for structural analysis theory and application for linear
materials. Doboku Gakkai Ronbunshu. 2000 Apr 21;2000(647):31-45.
https://doi.org/10.2208/jscej.2000.647_31

[7] Alanani M, Ehab M, Salem H. Progressive collapse assessment of precast prestressed reinforced concrete
beams using applied element method. Case Studies in Construction Materials. 2020 Dec 1;13:e00457.
https://doi.org/10.1016/j.cscm.2020.e00457

[8] Botez MI, Bredean LU, loani AM. Numerical methods in progressive collapse assessment of RC framed
structures: FEM vs. AEM. Proc. 5th Int. Congr. Comput. Mech. Simul,, Research Publishing Services,
Singapore. 2014 Dec 10:1865-73. https://d0i:10.3850/978-981-09-1139-3_213

[9] Tagel-Din H, Meguro K. Applied element simulation for collapse analysis of structures. Bulletin of
Earthquake Resistant Structure Research Center. 1999 Mar;32(3):113-23.

[10] Shakeri A, Bargi K. Use of applied element method for structural analysis. KSCE Journal of Civil
Engineering. 2015 Jul 1;19(5):1375-84. https://d0i:10.1007 /s12205-015-0625-4

[11] Meguro K, Tagel-Din H. A new efficient technique for fracture analysis of structures. Bulletin of
Earthquake Resistant Structure Research Center, IIS, Univ. of Tokyo. 1997 Mar; 30:103-16.

[12] Azeez MR, Bhojaraj M, Ravikumar M, Bhanulatha GN. Experimental Study on Plastic Failure of Reinforced
Concrete Beams. International Journal of Applied Engineering Research. 2018;13(7):38-41.

[13] Ayoub A, Filippou FC. Nonlinear finite-element analysis of RC shear panels and walls. Journal of
Structural Engineering. 1998 Mar;124(3):298-308.

[14] Earij A, Alfano G, Cashell K, Zhou X. Nonlinear three-dimensional finite-element-element modelling of
reinforced-concrete beams: Computational challenges and experimental validation. Engineering Failure
Analysis. 2017 Dec 1;82:92-115, https://doi:10.1016/j.engfailanal.2017.08.025

[15] Halahla A. Study the behavior of reinforced concrete beam using finite element analysis. In Proceedings
of the 3rd World Congress on Civil, Structural, and Environmental Engineering 2018 Apr (Vol. 10).
https://D0I1:10.11159/icsenm18.103

[16] Demir A, Ozturk H, Dok G. 3D numerical modeling of RC deep beam behavior by nonlinear finite element
analysis. Disaster Science and Engineering. 2016 Apr;2(1):13-8.

[17] Castaldo P, Gino D, Bertagnoli G, Mancini G. Partial safety factor for resistance model uncertainties in 2D
non-linear finite element analysis of reinforced concrete structures. Engineering structures. 2018 Dec
1;176:746-62. https://doi.org/10.1016/j.engstruct.2018.09.041

[18] Applied Science International. Extreme Loading for Structures (ELS). Version 8.0. Durham, NC, USA:
Applied Science International, LLC.; 2021.

[19] Al-Khafaji FF. Enhancing the performance of cold bitumen emulsion mixtures with coir and glass fibres:
Experimental and numerical analysis. Research on Engineering Structures and Materials. 2025.
http://dx.doi.org/10.17515/resm2025-786ma0327rs

[20] Masne N, Pawar A. Experimental and numerical investigation of solid and hollow recycled aggregate
concrete beams subjected to torsion. Research on Engineering Structures and Materials. 2024.
http://dx.doi.org/10.17515/resm2024.457me0920rs

[21] Hemamathi A, Sukumar B, Chantrakant RH. Numerical Analysis of RCC Beam Using ABAQUS. In I0P
Conference Series: Earth and Environmental Science 2022 Oct 1 (Vol. 1084, No. 1, p. 012077). 10P
Publishing. https://d0i:10.1088/1755-1315/1084/1/012077

[22] Dassault Systéemes. ABAQUS/CAE. Version 2022. Providence, RI, USA: Dassault Systemes Simulia Corp.;
2022.

[23] Raju MR. Analysis of RCC Beams using ABAQUS. International Journal of Innovations in Engineering and
Technology (IJIET). Vol. 5. 2015 3 June: 2319 - 1058.

[24] Fagerhgi S, Bergsbakken AK. Abaqus FEA with Concrete Damaged Plasticity and its feasibility in
recreating laboratory experiments: A numerical analysis and sensitivity study (Master's thesis, OsloMet-
Storbyuniversitetet). https://hdl.handle.net/11250/3101600

[25] Lee ], Fenves GL. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering
Mechanics. 1998 Aug;124(8):892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)

[26] Hordijk DA. Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses.
Heron. 1992;37(1).

[27] Tagel-Din H, Meguro K. Analysis of a small-scale RC building subjected to shaking table tests using
Applied Element Method. In Proceedings of the 12th World Conference on Earthquake Engineering, New
Zealand 2000 (pp. 1-8).

[28] Tagel-Din H, Meguro K. Consideration of Poisson’s ratio effect in structural analysis using elements with
three degrees of freedom. Bull. of Earthquake Resistant Struct. Res. Ctr. 1998;31:41-50.

[29] Alanani M, Ehab M, Salem H. Progressive collapse assessment of precast prestressed reinforced concrete
beams using applied element method. Case Studies in Construction Materials. 2020 Dec 1;13:e00457.
https://doi.org/10.1016/j.cscm.2020.e00457

18


https://doi.org/10.2208/jscej.2000.647_31
https://doi.org/10.1016/j.cscm.2020.e00457
https://doi:10.3850/978-981-09-1139-3_213
https://doi:10.1007/s12205-015-0625-4
https://doi:10.1016/j.engfailanal.2017.08.025
https://DOI:10.11159/icsenm18.103
https://doi.org/10.1016/j.engstruct.2018.09.041
http://dx.doi.org/10.17515/resm2025-786ma0327rs
http://dx.doi.org/10.17515/resm2024.457me0920rs
https://doi:10.1088/1755-1315/1084/1/012077
https://hdl.handle.net/11250/3101600
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
https://doi.org/10.1016/j.cscm.2020.e00457

Azizi and Yajdani / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx

[30] Kwak HG, Kim SP. Nonlinear analysis of RC beams based on moment-curvature relation. Computers &
structures. 2002 Mar 1;80(7-8):615-28. https://doi.org/10.1016/S0045-7949(02)00030-5

[31] Salem HM, El-Fouly AK, Tagel-Din HS. Toward an economic design of reinforced concrete structures
against  progressive  collapse.  Engineering  Structures. 2011 Dec  1;33(12):3341-50.
https://doi.org/10.1016/j.engstruct.2011.06.020

[32] Gohel V, Patel PV, Joshi D. Analysis of frame using applied element method (AEM). Procedia Engineering.
2013 Jan 1;51:176-83. https://d0i:10.1016 /j.proeng.2013.01.026

[33] Galano S, Losanno D, Miluccio G, Parisi F. Multidimensional nonlinear numerical simulation of post-
tensioned concrete girders with different prestressing levels. Structural Concrete. 2023 Dec;24(6):7021-
42. https://d0i:10.1002/suco0.202300272

[34] Hanganu AD, Onate E, Barbat AH. A finite element methodology for local/global damage evaluation in
civil engineering structures. Computers & Structures. 2002 Aug 1;80(20-21):1667-87.
https://doi.org/10.1016/S0045-7949(02)00012-3

[35] Mahrous A, Ehab M, Salem H. Progressive collapse assessment of post-tensioned reinforced concrete flat
slab  structures using AEM. Engineering Failure Analysis. 2020 Jan 1;109:104278.
https://doi.org/10.1016/j.engfailanal.2019.104278

[36] Lourenco PB, Silva LC. Computational applications in masonry structures: from the meso-scale to the
super-large/super-complex. International Journal for Multiscale Computational Engineering. 2020;18(1).
https://d0i:10.1615/IntJMultCompEng.2020030889

[37] Eraky A, A Mustafa SA, Badawy M. Structural analysis using Applied Element Method: a review. The
Egyptian International Journal of Engineering Sciences and Technology. 2021 Jun 1;34(1):16-27.
https://dx.doi.org/10.21608/eijest.2021.56786.1043

[38] Christy DL, Pillai TM, Nagarajan P, Manimaran L. Determination of Crack Pattern in Concrete Structures
Using Applied Element Method. In Materials Science Forum 2019 Oct 30 (Vol. 969, pp. 303-308). Trans
Tech Publications Ltd. https://doi.org/10.4028 /www.scientific.net/MSF.969.303

[39] Beshara FB, EI-Mahdy 00, Mahmoud A, Abbass MA. Simulating of RC Frames under Progressive Collapse
Using AEM. International Journal of Advanced Engineering and Business Sciences. 2023 Feb 1;4(1):110-
38. https://doi:10.21608/1JAEBS.2023.164905.1043

Appendix: Data Tables Used in Numerical Analysis

Parameters Used in AEM Modelling

Parameters Symbol Value Unit
Young’s Modulus E 25000 MPa
Shear Modulus G 10416.66 MPa
Element Thickness T 1.515 mm
Spring Spacing dx, dy, d. 20.2,11.9,13.64 mm
Area of Influence ax, ay, az 162.3,275.5,240.3 mm?2
Number of Elements (X, y, z) Nx, Ny, N 99,21, 11 -
Normal Spring Stiffness (X, Y, Z, Kn 200.9,578.7, 440.5 kN/mm
directions)
Shear Spring Stiffness (X, Y, Z, Ks 83.7,241.1,183.5 kN/mm
directions)
Total Number of Elements 22869
Data for Concrete Data for Steel
M25 Density (Ton/mms3) 2.4E-09 Fe500 Density (Ton/mm3) 7.85E-09
. Young’s Modulus p
Elastic Young's Modulus (MPa) 25000 Elastic (MPa) 2x10
Poisson’s Ratio 0.2 Poisson’s Ratio 0.3
2 Yield Stress (MPa) 550
1%}
£ Plastic Strain 0
'é Concrete damage plasticity
3] . .
A Dilation Angle Eccentricity fbo/fco K Viscosity
parameter
34 0.1 1.15 0.666 0.0001
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Compressive Behavior

Tensile Behavior

Inelastic Damage
Yield Stress ) Inelastic Yield Cracking Damage Cracking
(MPa) Strain (%)  Parameter, d. Behavior ?ﬁgzs Strain (%) Parameter,d:  Strain (%)
12.50 0 0 0 3 0 0 0
14.78 0.0000150 0 1.50E-05  1.6643 0.00028 0.4452 0.000281
16.90 0.0000400 0 4.00E-05  1.1791 0.00051 0.6069 0.000507
18.82 0.0000790 0 7.90E-05  0.9233 0.00072 0.6922 0.000718
20.50 0.0001320 0 0.00013 0.7638 0.00092 0.7453 0.000923
21.93 0.0002020 0 0.0002 0.6541 0.00112 0.7819 0.001124
23.08 0.0002900 0 0.00029 0.5738 0.00132 0.8087 0.001324
23.95 0.0003960 0 0.0004 0.5122 0.00152 0.8292 0.001522
24.55 0.0005200 0 0.00052 0.4634 0.00172 0.8455 0.00172
24.89 0.0006610 0 0.00066 0.4237 0.00192 0.8587 0.001917
25.00 0.0008160 0 0.00082
2490 0.0009850 0.003936 0.00099
24.63 0.0011660 0.01492 0.00117
24.21 0.0013560 0.03174 0.00136
23.67 0.0015530 0.05319 0.00155
23.04 0.0017560 0.07821 0.00176
22.35 0.0019640 0.105814 0.00196
21.62 0.0021740 0.135175 0.00217
20.86 0.0023860 0.1655 0.00239
20.09 0.0025980 0.1964 0.0026
19.31 0.0028110 0.2274 0.00281
18.55 0.0030230 0.258 0.00302
17.80 0.0032350 0.288 0.00324
17.07 0.0034450 0.3172 0.00345
16.36 0.0036530 0.3454 0.00365
15.68 0.0038600 0.3727 0.00386
15.03 0.0040650 0.3988 0.00407
14.40 0.0042680 0.4238 0.00427
13.81 0.0044690 0.4476 0.00447
13.24 0.0046690 0.4704 0.00467
12.70 0.0048660 0.492 0.00487
12.18 0.0050620 0.5126 0.00506
11.70 0.0052570 0.5321 0.00526
11.23 0.0054490 0.5507 0.00545
10.79 0.0056410 0.5683 0.00564
10.37 0.0058300 0.585 0.00583
10.00 0.0060100 0.6 0.00601
9.60 0.0062060 0.6159 0.00621
9.24 0.0063920 0.6302 0.00639
8.91 0.0065760 0.6437 0.00658
8.58 0.0067600 0.6566 0.00676
8.28 0.0069420 0.6688 0.00694
7.99 0.0071240 0.68053 0.00712
7.71 0.0073040 0.6915 0.0073
7.50 0.0074480 0.7 0.00745
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