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Article Info  Abstract 

Article History:  In the presence of the evolution of computational mechanics and machine learning 
sciences, the formulation of estimation tools is of significant importance. In this 
article, the construction of Feed-Forward Neural Networks is presented for the 
estimation of failure load, failure time, and corresponding peak structure 
displacements, velocities and accelerations. The dataset was obtained from the 
computational nonlinear dynamic failure of a single-story building. It has been 
demonstrated that the supervised learning procedure has converged rapidly, at 4 
epochs, and with a small mean squared error, namely about 1%. Moreover, the 
correlation between the outputs and targets of all subsets of the initial dataset 
vector is very strong. Following the model’s reliability, it has been proven that the 
presence of resonance is making significant amplifications to the response of the 
structure, in the order of magnitude of the theoretical value of the dynamic 
amplification factor of 10 for sinusoidal waves. Ultimately, the formulated 
Networks comply with the physical constraints and are reliable for estimations 
that will assist in to design of earthquake-resistant infrastructures.  
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1. Introduction 

Dynamic failure and its triggering factors are considered of paramount importance in the Civil 
Engineering discipline. In the older days, the researchers could only a posteriori determine the 
influencing parameters of a failure, usually after an earthquake event [1-4]. This kind of scientific 
literature was helpful in order to documenting, categorizing, and determining the major governing 
factors in order to obtain a failure. Earthquake accelerations and major period in relation to 
eigenperiod, infrastructure intrinsic vulnerability, soil, and topographical resonance are some of 
the common key factors to set an infrastructure beyond repair. Nowadays, with the evolution of 
computer science and computational mechanics disciplines, scientific publications are substantial 
in number and provide some a priori investigations [5-6]. To this extent, the recent literature 
focuses on predicting the failure mode and investigating the major vulnerabilities of a known 
structure prior to known seismicity. Moreover, the type of failure may also be predicted. 
Determining if a brittle or ductile failure type occurs is very important for enhancing security and 
complying with modern regulations of design that dictate the ductile failure of materials and 
structures. 
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In recent years, a vast developing scientific field is Machine Learning and its practical usage in all 
disciplines of science and all different aspects of engineering [7-28]. The most prominent 
development occurred from 2000 onward, since the evolution of computer science was offering the 
infrastructure that was adequate to compute an enormous number of calculations in a very short 
time interval. The presentation of Physics Informed Neural Networks (PINNs), namely, an 
accumulation of physical problem data and the idea of a model construction for estimating this 
phenomenon in a generalized way. With PINNs, many scientists and engineers have developed a 
numerical tool to overcome computational or experimental procedures. Models that estimate the 
materials stress-strain law, from composite materials to geomaterials, are made from PINNs. Other 
machine learning models constructed estimate the response of systems of importance in every 
scientific subfield, such as buildings.  Regarding earthquake engineering and dynamic failure, the 
number of scientific publications that have employed machine learning theory is still evolving. 
From the literature accumulated, it has been demonstrated that different ways of dataset 
construction have been used. Data from real structures, experimental data, and some 
computational studies have been performed, and the data matrices have been employed. 
Afterward, different ways of Machine Learning models have been employed, such as the particle 
swarm optimization, the genetic algorithms optimization schemes, or Bayesian inference methods. 
All of these works have given models of substantial reliability and can contribute to engineering 
estimations of response for physical systems. 

In this work, a model that estimates the main parameters at failure of a single-story building 
subjected to a horizontal dynamic load is presented. The model is formulated through a Feed-
Forward Neural Network architecture. The horizontal dynamic load is sinusoidal with an excitation 
period equal to the structure’s eigenperiod. The input parameters of the model are the frame height 
H, the frame length L, the Young Modulus E, the yield stress σy, and the eigenperiod of the structure 
T. The output parameters of the model are the failure load P0, the time of the failure t0, the maximum 
displacement dmax of the frame at failure, the corresponding maximum velocity vmax, and the 
corresponding maximum acceleration amax. The dataset matrix has a size of 1440. The dataset was 
obtained with analyses in ANSYS (ANSYS, Inc.) and Open-Source computational mechanics MSolve. 
The analysis was employed by Fiber Beam Force-Based Elements. In addition, the failure of the 
structure was determined as if a percentage of the total element fibers failed, which means it 
exceeded the maximum allowed strain. Finally, after the accumulation of the dataset matrix, a 
neural network model was obtained with the aid of the MATLAB neural network toolbox (The 
MathWorks, Inc.). Two hidden layers with 64 Neurons each were selected as the architecture. The 
activation functions are the sigmoid function for all layers except the output layer, and the pure 
linear to the output layer. The error metric was the Mean Squared Error (MSE), and the early 
stopping was employed to avoid overfitting. The outline of this article is the following. Initially, a 
brief presentation of the dynamic failure and its particular determination employed is given. Then, 
the Machine Learning framework adopted in the present study is given. Subsequently, the practical 
part of this work follows. The definition of the problem and the presentation of the results will be 
provided with the relative discussion. Finally, concluding remarks with future work will be 
provided.  

2. Dynamic Failure of Structures - Definition and Properties 

Dynamic loading and the corresponding failure are a complex phenomenon. Its definition is a 
matter of discussion among the engineers. It is a common point of view that failure under any 
circumstances occurs when the physical system has exceeded its load-bearing capability. While this 
is a comprehensive phase, defining the stress-strain or the force-displacement pair that represents 
this capability is disputable. Many approaches have been proposed regarding this. Some of them 
are displacements of certain places of a structure, not to exceed a defined value, obtained from 
experimental or in situ experience. Moreover, an inter-story drift maximum value may also be 
incorporated. In addition, in computational models, the stiffness reduction over a specified 
threshold, like 5% of the initial stiffness, could also be employed. Finally, a selection of a number of 
Gauss integration points that would exhibit softening, namely a negative plastic hardening 
modulus, is also an alternative among others. 
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The dynamic loading of a structure may be induced by an earthquake, machine oscillations, or other 
external forces. Its mathematical formulation as a multi-degree-of-freedom system is given as; 

𝑀𝑢̈ + 𝐶𝑢̇ + 𝐹𝑖𝑛𝑡 = 𝑃 (1) 

where 𝑃 is the external force vector as a function of time, 𝑀, 𝐶, 𝐹𝑖𝑛𝑡 stand for the classical mass, 
damping matrices, and internal forces vector obtained by the standard FEM and Newton-Raphson 
iterative methods. A common function of 𝑃 is the following P = P0sin(ωt), where P0 and ω are the 
peak load and frequency of excitation, respectively. 

The dynamic loads, from the qualitative point of view, compared to the static loads, are more 
detrimental in general. That is explained because the momentum of the seismic energy causes 
damages as a result of the inertia forces. Moreover, a resonance may be obtained in dynamic 
loading. This resonance may occur when the natural frequency of the building equals the excitation 
frequency. However, soil or topographical factors may also result in resonance. Thus, the 
displacements and damages may be increased in regard to static loading. From the computational 
point of view, a dynamic nonlinear analysis is a more stable and convergent process in comparison 
to a static nonlinear analysis. This is a consequence of the mass matrix participation in the 
integration of the equation of motion. It has a contributing factor analogous to the inverse square 
of the load step; thus, the solution is easier to be obtained in relation to the static nonlinear analysis. 

In this work, a dynamic failure analysis of a single-story building is performed for various 
geometries and material parameters. The dynamic equation of (1) is solved for the resonance of 
each structure that is assumed, namely, when the eigenperiod and period of excitation are the same. 
The elements used are the fiber beam force-based proposed by Spacone et al. [29]. The failure in 
this work was defined as if to an element more than 50% of the total fibers have failed. Failure of a 
fiber is defined when its strain exceeds its maximum allowed value of 10%. 

3. Feed-Forward Neural Networks — Architecture and Supervised Learning 

The feed-forward neural network architecture (FNN) is the set of units, named neurons, allocated 
to several groups, called layers. The aforementioned structure is described as follows. Consider an 
FNN comprising 𝑛𝑙 layers, where each layer comprises 𝑛𝑛 neurons. All layers, with the exception of 
the input layer, are given a weight matrix 𝑊 and a bias vector 𝑏, which constitute their importance 
in the FNN. All these matrices comprise the model's adjustable hyperparameters. In each layer, a 
function that relates it to the next layer is assigned. This function is called the activation function, 
and here it is symbolized as 𝐴. In Fig. 1, a schematic representation of an FNN comprising one 
hidden layer is given.  The layer of the input represents the set of the following variables: the frame 
height, the frame length, the yield stress, the Young Modulus, and the eigenperiod of the structure. 
The layer of the output represents the set of the following variables: peak load at failure, the time 
that this failure occurs, the maximum displacement, the maximum velocity, and the maximum 
acceleration of the structure. The implementation of an FNN for a specific layer i, given below;   

𝑧𝑖 = 𝐴(𝑊𝑖𝑧𝑖−1 + 𝑏𝑖)  ,              𝑖 = 1, … , 𝑛𝑙 (2) 

Equation (2) simply denotes that an FNN is a mapping function from the previous layer to the next 
one, and in a broader view, from input to output using the set of the analogous activation functions. 

The FNN hyperparameter determination is performed via supervised learning. Supervised learning 
dictates that the FNN is provided data samples, comprising an input and a target (flag) value, and 
then the parameters are altered in order to minimize the divergence from an error metric, which 
connects output and target values. The most common error metric is the Mean Squared Error 
(MSE), which is given below: 

𝑀𝑆𝐸 =   
1

𝑁𝑑𝑎𝑡𝑎
∑ (𝑜𝑢𝑡𝑝𝑢𝑡𝑖 −  𝑡𝑎𝑟𝑔𝑒𝑡𝑖)2

𝑁𝑑𝑎𝑡𝑎

𝑖=1

 (3) 
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In general, the optimization of equation (3) refers to a non-convex objective function; thus, the 
solution methods are restricted to quasi-Newton schema. The FNN architecture is the most simple 
and prominent in the field of machine learning. It can provide, in many cases, accurate and reliable 
modeling. Unlike recurrent neural networks, they are not requiring training loops from outputs 
already accumulated. Consequently, the model formulation is faster and easier to be retrained. 

In this work, the FNN architecture is used for the formulation of a surrogate model that estimates 
the dynamic failure of a single-story building under a dynamic horizontal force of a sinusoidal 
nature, with a frequency the same as the eigenfrequency of the structure. Two hidden layers with 
64 Neurons each were selected as the architecture. As the error metric, the MSE function of 
equation (3) was selected. The input variables are the frame height, the frame length, the yield 
stress, the Young Modulus, and the eigenperiod of the structure. The output layers are the peak 
load at failure, the time that this failure occurs, the maximum displacement, the maximum velocity, 
and the maximum acceleration of the structure. 

 

Fig. 1.  A setup of a feed-forward Neural Network containing a single hidden layer 

4. Model Hyperparameter Determination and Activation Function 

One important aspect of every machine learning modeling formulation is the model’s 
hyperparameter determination. The definition of the weight and bias matrices in order to minimize 
the error function is a non-trivial task. Many methods are proposed. A prominent choice is the 
Levenberg-Marquardt algorithm, namely the optimization of the square root of the sum of the 
squares of a vector. Another proposal is the Adam optimizer method, namely the implementation 
of the optimization scheme named Adaptive Moment Estimation, which is an adaptive learning 
method algorithm using gradient history. An alternative method similar to Adam is the Tree Parzen 
Estimator, which is a Bayesian inference optimization method.  

The selection of the activation function, namely the relation between a previous and a subsequent 
layer, is very decisive for the reliability of the feed-forward neural network. In the precedent years, 
several functions have been used and proven to be of significant value. Initially, all the linear-type 
functions have been proposed especially for the relation between the last hidden layer and the 
output layer. Pure linear and Rectified Linear Unit functions can be useful, depending on the 
physical or other constraints that should be applicable. Rectified Linear Unit is the linear function 
for positive input, which is not differentiable at zero. Other proposals of activation functions are 
the logistic or alternatively sigmoid function, used in language recognition models, and the 
Gaussian Error Linear Unit (GELU), which is more specialized for random models or nature 
interpretation models [30-32].  
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An activation function should comply with the following propositions:  

• Universal Approximation Theorem: When the activation function is nonlinear, a FNN with 
two layers is proven to be a structure that results in an accurate and reliable model. 

• Finite Activation Range: For a finite range of an FNN, gradient-based training algorithms are 
more robust, because pattern recognition schema significantly affects a limited amount of 
weight factors. 

• Infinite Activation Range: For an infinite range of an FNN, training is more effective because 
the pattern recognition schema significantly affects the majority of the weight factors. 

A sigmoid function is convex for values less than a particular point, and it is concave for values 
greater than that point: in many of the examples here, that point is 0. The logistic or sigmoid 
activation function is stated as follows: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (4) 

In this work, the activation function selected is the sigmoid nonlinear function for all layers except 
the output layer. The output layer has the pure linear function. The determination of weight and 
bias matrices is attained through the Levenberg-Marquardt algorithm since the Error function is 
the Mean Squared Error (MSE). 

5. Numerical Application - Formulation of A Neural Network Model Estimating 
the Dynamic Failure of a Single-Story Building Under a Horizontal Dynamic 
Sinusoidal Load 

The aforementioned theoretical framework is applied to the single-story structure of Figs. 2, and 3. 
In Fig. 2, the structure is presented alongside the dynamic horizontal load applied at the top of the 
structure. In Fig. 3, the cross-section adopted for all beam elements is shown. The structure was 
simulated with the Euler-Bernoulli fiber beam force-based. The frequency excitation of the 
dynamic load in all cases was the same as the frequency of the structure, that is 𝜔̅ = 𝜔. The 
structure was excited by altering the peak load until failure was obtained. Failure was defined as if 
to an element more than 50% of the total fibers have failed. Failure of a fiber is defined when its 
strain exceeds its maximum allowed value of 10%. Each fiber has the constitutive material model 
of linear-elastic and linear-hardening uniaxial law with a hardening modulus equal to 10% of the 
Young's Modulus. The analyses were performed in the ANSYS software (ANSYS, Inc.) and the open-
source computational mechanics code MSolve of the Institute of Structural Analysis of the School 
of Civil Engineering of the National Technical University of Athens (NTUA). A parametric study was 
performed for the following values: the frame height H (m), the frame length L (m), the Young 
Modulus E (GPa), the yield stress σy (MPa), and the eigenperiod T (s). Specifically, the selected 
values for H were 3, 3.5 and 4 (m), for L were 3, 4, 5, 6 and 7 (m), for E were 200, 210, 250 and 300 
(GPa), for σy were 200, 275, 300 and 355 (MPa), and for T were 0.05, 0.1, 0.25, 0.5, 0.75 and 1(s).  

Table 1. Selected values for the input parameters. All input vectors were generated as Cartesian 
product of the selected values 

Parameter Selected Values 

H (m) 3, 3.5, 4 
L (m) 3, 4, 5, 6, 7 

E (GPa) 200, 210, 250, 300 
σy (MPa) 200, 275, 300, 355 

T (s) 0.05, 0.1, 0.25, 0.5, 0.75, 1 
 

The aforementioned selected values are depicted in Table 1, and all input vectors used for the 
analyses were made through the Cartesian product of the selected values. Subsequently, a total of 
1440 analyses were performed, and the values of failure load P0, the time of the failure t0, the 
maximum displacement dmax of the frame at failure, the corresponding maximum velocity vmax, and 
the corresponding maximum acceleration amax were accumulated. Subsequently, the dataset matrix 
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was obtained, and the FNN training procedure was performed. The FNN formulated had 5 input 
variables, namely H, L, E, σy, T, and 5 output variables, namely, P0, t0, dmax, vmax amax. The FNN 
architecture comprises of two hidden layers with 64 neurons in each layer. The activation functions 
are the sigmoid relation of equation (4) for all layers apart from the output.  

 

Fig. 2. A single-story building, analyzed in this work for dynamic failure 

  

Fig. 3. The cross-section of the single-story 
building 

Fig. 4. Workflow analysis of the present work 

The output layer is activated through pure linear relation. The error metric was performed through 
the MSE error function of equation (3). The model hyperparameter determination is through the 
Levenberg-Marquardt algorithm, which is focusing on minimizing the objective function of the 
square root of the sum of the squares. The initial dataset matrix was subdivided into a training 
subset, a validation subset, and a test subset. These have sizes in the percentage of the total dataset 
matrix 70%, 15%, and 15% respectively. The subset indices were selected in a pure random way. 
In addition, a normalization of each subset was done in order to assist the supervised learning 
procedure to converge faster and provide a more reliable model. Finally, in order to avoid 
overfitting, the usage of early stopping is employed in order not to obtain too small MSE in training 
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and then the model to lose its generality. A schematic representation of the analysis workflow 
performed in this work is given in Fig. 4.   

6. Results and Discussion 

The results of this work are presented hereinafter. The following Figures are given: performance 
plot of the supervised learning (Fig. 5), and regression plots between outputs and targets (Fig. 6), 
for all dataset matrices (overall dataset, training, validation, and test subsets). Moreover, the error 
histogram is given (Fig. 7), and the statistical details of the analysis are presented (Fig. 8). Finally, 
an illustrative representation of the network is given for a selection of representative values of 
E=210 GPa, σy=275 MPa, and two different eigenperiods T=0.1 and T=1 s (Figs. 9-13 and Figs. 14-
18). From the results presented, several important conclusions can be drawn regarding the 
network reliability and practical significance. The convergence analysis gives an insight into the 
model’s accuracy. The MSE provided at the end of supervised learning is very small, namely 0.0145, 
and it is obtained for epochs-iterations in the order of magnitude of 10. Consequently, the model is 
reliable and easily adjustable to more computational or experimental data. Moreover, overfitting is 
avoided since the MSE curves in the validation and test subsets are practically constant for the 
number of epochs required for convergence in training.  

 

Fig. 5. Performance plot of the supervised learning 
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Fig. 6. Regression plots of the outputs and targets for the training subset (upper left), validation 
subset (upper right), test subset (lower left), and total dataset (lower right) 

 

Fig. 7. Error histogram 

Moreover, the error distribution is practically normal, and the mean value is very close to zero. This 
attribute, in combination with the fact that the samples of subsets were selected in a random way, 
leads to the conclusion that the error estimations are acceptable and fairly distributed. The 
correlation between outputs and targets in all subsets and the total dataset is considered as strong 
since all the correlation coefficients tend to unity. For the training subset, the correlation is 
estimated as 0.954, which is considered as very strong. Moreover, there is an observation of a small 
negligible slope that indicates that the model slightly underestimates the targets. For the validation 
subset, the correlation is estimated as 0.884, which is considered as very strong, however, smaller 
than the training subset. In addition, a small negligible slope is evident, which indicates that the 
model slightly underestimates the targets.  For the test subset, the correlation is estimated as 0.883, 
which is considered as very strong, however, smaller than the training subset and practically the 
same as the validation subset. Again, a small negligible slope that indicates that the model slightly 
underestimates the targets is evident. Most importantly, the total dataset has a reliability 
coefficient of 0.933, which is a very strong overall coefficient of correlation that dictates that the 
total supervised learning is successful. The slight underestimation of the outputs in relation to 
targets is seen in the overall dataset. However, this would result in more conservative estimations.  
Thus, the model is substantially reliable and on the side of safety.  
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Fig. 8. Statistical metrics of the supervised learning 

 

Fig. 9. Neural Network Prediction for failure load. Values for E=210 GPa, σy=275 MPa and 
T=0.1s 

Regarding training parameters that concern the supervised learning process itself, it is initially 
observed that the 6 checks of the validation set were verified, i.e., the values estimated by the 
network in the validation set are close to the corresponding data values. Additionally, the slope of 
the performance plots during convergence is sufficiently small. The value of Mu, depicted in Fig. 8, 
is substantially small. This value controls the weight, and bias matrices update when the supervised 
learning is taking place. If this value exceeds a threshold, it is an indication that the learning rate 
could not be better. This is not happening in this learning, but it was proven not to be necessary 
since the validation checks were passed. The training was performed through Levenberg-
Marquardt, which, apart from the minimization of the MSE, is a method of the unconstrained 
optimization problem. Since the physical problem analyzed in this work complies with error 
estimations with the aforementioned error metric, it is natural that this optimization algorithm is 
providing fast convergence and reliable optima, namely model hyperparameters. 
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Fig. 10. Neural Network Prediction for failure time. Values for E=210 GPa, σy=275 MPa and 

T=0.1 s 

 
Fig. 11. Neural Network Prediction for failure maximum displacement. Values for E=210 GPa, 

σy=275 MPa and T=0.1 s 

 
Fig. 12. Neural Network Prediction for failure maximum velocity. Values for E=210 GPa, 

σy=275 MPa and T=0.1 s 
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Fig. 13. Neural Network Prediction for failure maximum acceleration. Values for E=210 GPa, 
σy=275 MPa and T=0.1 s 

 

Fig. 14. Neural Network Prediction for failure load. Values for E=210 GPa, σy=275 MPa and T=1 s 

 
Fig. 15. Neural Network Prediction for failure time. Values for E=210 GPa, σy=275 MPa and T=1 s 
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Fig. 16. Neural Network Prediction for failure maximum displacement. Values for E=210 GPa, 

σy=275 MPa and T=1 s 

 
Fig. 17. Neural Network Prediction for failure maximum velocity. Values for E=210 GPa, σy=275 

MPa and T=1 s 

 
Fig. 18. Neural Network Prediction for failure maximum acceleration. Values for E=210 GPa, 

σy=275 MPa and T=1 s 
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The practical significance of the proposed machine learning modeling is enlightened hereinafter by 
presenting the selection of the representative material parameters, as well as two prominent 
eigenperiods for stiff and compliant structures, and the model predictions in schematic 
representation. As portrayed in Figs. 9-13, the network prediction for a relatively high-frequency 
excitation (T=0.1 s) gives values for the failure load between 5 and 50 kN. The shape of the curves 
is smooth and not with steep slopes. Therefore, the failure load for small changes in the geometry 
does not alter notably. In addition, the maximum values of the load are found at small values of the 
column height, as expected, since there the stiffness is greater. The network prediction for a 
relatively high-frequency excitation (T=0.1 s) gives values for the failure time between 0.02 and 
0.15 s. The largest value of the time is found at the average value of the column height and decreases 
at more extreme values. The slopes are relatively steep; therefore, the difference in time can be 
significant for small differences in geometry. This time is however relatively short and leaves little 
room for escape from the structure. The network prediction for a relatively high-frequency 
excitation (T=0.1 s) gives values for the maximum failure displacement between 0 and 0.06 m. The 
largest values of the displacement are found at the largest values of beam and column lengths, as 
expected due to lower stiffness. The curve is not truly monotonic, but the areas where this pattern 
is not evident are relatively limited, and it is practically verified that the longer the lengths, the 
larger the failure displacements. The network prediction for a relatively high-frequency excitation 
(T=0.1 s) gives values for the maximum failure velocity between 1.5 and 4 m/s. The maximum 
values are found at the smallest values of column length and high values of beam length. The curve 
is not truly monotonic. However, the minimum values are found at the largest values of column 
length and smaller values of beam length. Therefore, in principle, the stiffest system is more likely 
to have a reduced maximum velocity. Therefore, it is not the length of the beams or columns that is 
the criterion, but the combination of these expressed by the stiffness of the system. The network 
prediction for a relatively high-frequency excitation (T=0.1 s) gives values for the maximum failure 
acceleration between 75 and 225 m/s2. It is noted that these displacements are nodal and point-
like, so they may have an increased value. In fact, these are located spatially slightly lower than the 
top of the columns. The maximum values are achieved when the height of the frame, i.e., the 
columns, is 3.2 m. Therefore, for a rigid structure, the predictions are maximized. This is a result of 
the resonance because the rigid structure has a low eigenperiod value, as does the excitation. 

As depicted in Figs. 14-18, the network prediction for a relatively low-frequency excitation (T=1 s) 
gives values for the failure load between 10 and 45 kN. The shape of the curves is smooth and not 
with steep slopes. Therefore, the failure load for small changes in the geometry does not alter 
significantly. In addition, the maximum values of the load are found at small values of the column 
height, as expected, since there the stiffness is greater. The network prediction for a relatively low-
frequency excitation (T=1 s) gives values for the failure time between 0.04 and 0.15 s. The largest 
value of the time is found at the average value of the column height and decreases at more extreme 
values. The slopes are relatively steep, so the difference in time can be significant for small 
differences in geometry. However, this time is relatively short and leaves little room for escape 
from the structure. 

The network prediction for a relatively low-frequency excitation (T=1 s) gives values for the 
maximum failure displacement between 0 and 0.065 m. The largest values of the displacement are 
found at the largest values of beam lengths and mainly columns, as expected due to lower stiffness. 
The curve is not truly monotonic, but the areas where this pattern is not evident are relatively 
limited, although more compared to the high-frequency excitation (T=0.1 s), and it is essentially 
verified that the longer the lengths, the larger the failure displacements. In fact, the total maximum 
for a column length value of 3.8 meters indicates a fairly flexible structure. Therefore, it is estimated 
that here we have resonance of the structure. The network prediction for a relatively low-frequency 
excitation (T=1 s) gives values for the maximum failure velocity between 0.5 and 2.5 m/s. The 
maximum values are found at the largest values of column length. The curve is not truly monotonic. 
However, the minimum values are found at the smallest values of column length. Therefore, in 
principle, stiffer columns are more likely to have a reduced maximum velocity. The network 
prediction for a relatively low-frequency excitation (T=1 s) gives values for the maximum failure 
acceleration between 20 and 150 m/s2. It is noted that these displacements are nodal and point-
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like, so they may have an increased value. In fact, these are located spatially slightly lower than the 
top of the columns. The maximum values are achieved when the height of the frame, i.e., the 
columns, is 4 m. Therefore, for a flexible structure, the predictions are maximized. This is a result 
of the resonance because the flexible structure has a high eigenperiod value, as does the excitation. 

Subsequently, the models proposed are accurate and reliable in terms of the supervised learning. 
A strong correlation of outputs and targets is attained. The physical constraints of the model are 
evident in the proposed model. Moreover, it can be adjusted with an alleviated amount of 
computational time. Thus, it can be a computational and numerical tool to assist earthquake 
engineering design, as it can give reliable predictions of the failure attributes of a one-story 
building. The increased reliability of the failure analysis as a consequence of the fiber beam force-
based element leads to a significant accuracy of the proposed machine learning model. Finally, it 
can be observed that the total amount of the values selected for the beams is realistic, and since the 
generality of the model is attained, as a consequence of no overfitting, one can provide estimations 
even outside of the range of the input training dataset. The coherence of the proposed modeling is 
practical for engineers and practitioners, and therefore, an estimation tool for the seismic design is 
available through the present model.  

7. Conclusions 

In this work, a model that estimates the main parameters at failure of a single-story building 
subjected to a horizontal dynamic load is presented. The model is formulated through a Feed-
Forward Neural Network architecture. The horizontal dynamic load is sinusoidal with an excitation 
period equal to the structure’s eigenperiod. The input parameters of the model are the frame height 
H, the frame length L, the Young Modulus E, the yield stress σy, and the eigenperiod of the structure 
T. The output parameters of the model are the failure load P0, the time of the failure t0, the maximum 
displacement dmax of the frame at failure, the corresponding maximum velocity vmax, and the 
corresponding maximum acceleration amax. After the construction of the dataset matrix, through 
dynamic failure time history analysis of a single-story building, a neural network model was 
obtained with the aid of the MATLAB neural network toolbox. Two hidden layers with 64 Neurons 
each were selected as the architecture. The activation functions are the sigmoid function for all 
layers except the output layer, and the pure linear to the output layer. The error metric was the 
Mean Squared Error (MSE), and the early stopping was employed to avoid overfitting. 

In all subsets and in the total dataset matrix, it has been proven that the model could estimate the 
outputs with substantial accuracy in relation to the given targets. Slight underestimations of the 
proposed model are given through the proposed machine learning formulation. The failure time in 
all cases was small enough and did not provide time for the residents of the infrastructure to 
evacuate it. Failure loads are about 10-50 kN, which could resemble a force of intermediate 
magnitude as it corresponds to a mass load of 1-5 Mgr. The failure peak displacements are 
substantially high, about 5 cm, and this results in an inter-story drift of the order of magnitude of 
1-2%, which corresponds to a smaller value than the corresponding regulatory maximum allowed 
drift for avoiding structural collapse, which in EC8 is 10%. The failure peak velocity is in the vicinity 
of 1-2 m/s, which is an intermediate value of velocity. In addition, the peak value accelerations, 
which are nodal values in the places near the top tip, are about 150 m/s2, which is considered very 
high. These values can be justified as follows. When a fiber fails, the loads of stiffness are practically 
zero. Therefore, the total balance could only be achieved from inertia and damping forces. Damping 
forces are relatively low; subsequently, the majority of the forces are the inertia counterpart. Thus, 
the accelerations are increased. In terms of a practical engineering point of view, the present 
formulation depicts that the failure time is far smaller than a second. That results in the increased 
probability of having casualties. This probability is proven not to be very different when the 
stiffness of the structure alters. Since the structures were excited to have a resonance, it is 
important to highlight that this case is the critical rather than the actual value of the eigenperiod. It 
is evident that the increase in ductility of the structure would increase the failure time, thus it is 
highlighting the importance of regulatory proposals for ductility. Finally, it is shown through our 
results that the majority of the output parameters are influenced by the ratio of the stiffness of the 
beams to the columns rather than the stiffnesses alone. A stiffer behavior is obtained when the ratio 
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tends to zero, which means the columns are stronger than the beams. This is expected, and it is 
reliably quantified through the proposed modeling.   

The proposed machine learning framework presents the following setbacks and disadvantages. 
The first one is that no comparison or training with experimental data was performed. That would 
increase the model’s reliability. However, the amount of reliability with the present data is 
substantial, and the finite element modeling is proven reliable through the respective literature of 
fiber beam force-based elements. Moreover, the analyses could employ more material 
characteristic values of different orders of magnitude, such as the reinforced concrete usual value 
for E=30 GPa. Finally, the analyses with more complex structures, such as multistory buildings with 
non-uniform material law to all beam elements, and the subsequent comparison with the present 
findings should be implemented. As future work, an investigation of the present geometry and 
horizontal load, with time function pulse forces, such as T-Ricker pulse, would add to the present 
literature about the estimation of dynamic loading failure to pulse forces, which are also often 
present in structures after earthquakes. Additionally, an investigation of other machine learning 
frameworks could be used in order to construct more detailed models, such as the method of 
SHapley Additive exPlanations (SHAP) [24] or convolutional autoencoders [33]. 
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