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Over recent years, the design of experiments has emerged as a dynamic research
field, attracting significant attention from scholars and practitioners. Experimental
outcomes inherently exhibit variability due to measurement errors and the
complex, non-linear behavior of system responses influenced by unidentified
input factors. Within this context, the Taguchi method—with its use of orthogonal
arrays—offers an effective framework for identifying optimal input parameters
with a reduced number of experiments, typically validated through empirical test
data. Conventional statistical techniques, such as the modified Taguchi model and
response surface methodology, remain widely employed for parameter estimation
and optimization. However, recent advances in machine learning present powerful
alternatives. In this study, support vector regression, random forest regression,
and XGBoost regression models were compared with traditional approaches to
assess their relative efficiencies. The machine learning-based methodologies

demonstrated superior predictive accuracy while significantly reducing
experimental costs, preserving essential process insights, and minimizing
performance variability. Among these models, the XGBoost regression approach
delivered the most reliable performance, exhibiting the lowest prediction error
and an exceptionally high coefficient of determination (R? = 0.99).

Random Forest;
Parameter optimization
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1. Introduction

Taguchi introduced a structured approach using orthogonal arrays that significantly reduces the
number of experiments required while still capturing essential information from a full factorial
design. Taguchi introduced a structured approach using orthogonal arrays that significantly reduce
the number of experiments required while still capturing essential information from a full factorial
design. The Taguchi method is one of the most widely used statistical techniques for improving the
quality of manufactured products. According to Taguchi, the selection of appropriate control
factors can effectively nullify noise factors. Each test run in the Taguchi method is classified into
low (-1), medium (0), and high (1) levels of input process parameters.

Bhattacharya [1] explored the use of Response Surface Methodology (RSM) in pharmaceutical
applications, providing valuable insights relevant to the present work. Cui et al. [2] optimized the
physical and mechanical properties of spline surfaces using the Taguchi approach. Mounika et al.

*Corresponding author: charankumarganteda@gmail.com
agrcid.org/ 0000-0003-4964-7502; Porcid.org/ 0009-0008-8952-9969; corcid.org/0000-0003-1680-2078;

dorcid.org/0000-0001-6833-622x
DOI: http://dx.doi.org/10.17515/resm2025-998ml0702rs
Res. Eng. Struct. Mat. Vol. x Iss. x (xxxX) Xx-XX 1



mailto:charankumarganteda@gmail.com
http://dx.doi.org/10.17515/resm2025-998ml0702rs

Shobhalatha et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx

[3] optimized friction welding parameters using modifications in Taguchi, fuzzy logic, and response
surface methodologies. Panigrahi et al. [4] employed an integrated Taguchi and machine-learning-
based optimization approach to determine the optimal design parameters of a trapezoidal solar
cooker while minimizing heat loss. Rajyalakshmi et al. [5] performed a comparative evaluation of
the Taguchi method, Box-Behnken Design (BBD), and Central Composite Design (CCD) for
optimizing process parameters involving four factors at three levels. Their findings show that
although the Taguchi method is cost-effective, BBD and CCD offer superior accuracy and precision.
Rajyalakshmi et al. [5] also identified optimal parameters for Chemical Oxygen Demand (COD)
reduction and decolorization efficiency using multi-objective optimization in Fenton oxidation
processes, supported by strong correlations between empirical model predictions and
experimental data.

Romelin et al. [6] reported that Taguchi’s L9 array effectively identified optimal design points for
hydraulic ram pump performance. Singhavavelu et al. [7] reported the use of an L9 orthogonal
array for four factors at three levels. Panigrahi et al. [8] presented employed Taguchi and ML in
solar cooker optimization .Ross [9] reported the use of an L9 orthogonal array for four factors at
three levels. Rajyalakshmi [10] presented a simple methodology and validated it using existing
experimental results based on the modified Taguchi method. Rajyalakshmi and Nageswara Rao
[11] applied a modified Taguchi methodology to identify the optimum parameters influencing weld
dilution in ST-37 plates. Samuel et al. [12] demonstrated significant improvements in the
mechanical properties of biomaterials using heat-treatment optimization through Taguchi and
machine-learning techniques.

Athreya and Venkatesh [13] provided foundational work upon which the present study is built.
Varalakshmi et al. [14] focused on optimizing responses using various statistical design methods.
Varalakshmi et al. [15] investigated multi-response optimization of agricultural residues using a
modified Taguchi approach combined with Chauvenet’s criterion. Rajyalakshmi and Nageswara
Rao [16] .Lestari et al. [17] studied the influence of fused deposition modeling (FDM) parameters
on printing time and socket weight in transtibial prosthetic components using the Taguchi method.
Jou et al. [18] developed predictive defect models in die-casting using Artificial Neural Networks,
Support Vector Machines, and Random Forests combined with Taguchi methods.

Traditional statistical techniques often fail to adequately capture nonlinear behaviour, motivating
the present investigation. While traditional statistical techniques such as linear models and lower-
order interaction frameworks have been widely used, they often fall short in capturing the intricate
nonlinear relationships present in complex systems. To address these limitations, this research
extends previous models by integrating advanced machine learning algorithms capable of
modeling higher-order and nonlinear interactions among variables. This study systematically
compares traditional statistical models (Taguchi, RSM) with modern machine learning algorithms
(SVR, XGBoost, Random Forest) on a unified dataset. This hybrid approach is rarely presented in
machining literature with such rigor and reproducibility. Industrial experiments often operate
under resource constraints, limiting the number of design points. By demonstrating how different
models perform on a 27-run factorial design, provide practical guidance for real-world applications
where data is limited but precision is critical.

The experimental framework utilizes the test data originally developed by Srinivasa Athreya and
Venkatesh, with modifications aligned to the suggestions of Rajyalakshmi and Nageswararao. A
comparative analysis was conducted across several predictive and optimization techniques,
including Response Surface Methodology (RSM), Support Vector Regression (SVR), XGBoost, and
Taguchi-based linear models. Each method was evaluated based on its predictive accuracy,
quantified through metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE), and the coefficient of determination (R?). Graphical
representations were employed to visualize the performance differences and error margins
between predicted and actual values.

Among the models tested, XGBoost emerged as the most accurate, demonstrating the lowest
prediction error and the highest R? value. This indicates its superior capability in capturing
complex patterns and delivering precise predictions. The study highlights the effectiveness of
machine learning techniques in enhancing process modelling and optimization, especially when
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traditional statistical methods are constrained by linear assumptions. By integrating these
advanced approaches into the existing analytical framework, the research offers a robust
methodology for improving predictive performance in engineering and scientific applications.

2. Methodology
2.1 Taguchi Method

Taguchi designed a method to improve the quality of manufactured goods. According to him, way
of selecting appropriate control factors can nullify the noise factors. Ross(9) suggested an
appropriate orthogonal array (0OA) to perform experiments is as follows.

Nr=1+np(nc-1) (1)

Nt: Total number of experimental runs required; n,: Number of parameters (or factors) bei ng
studied; ni.: Number of levels for each parameter; 1: Represents the baseline or control condition
(reference level).

2.2 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is a statistical technique that is used to model and optimize
complex systems. It is commonly used in the fields of engineering, science, and business to design
and improve products or processes. RSM provides a suitable approximation using the following
form.

k k ko k @
y=a0+zaixi+2aiixi2+z Z a;jx;x;+e
i=1

i=1 i=1 j=i+1

ao: Constant, a;: coefficient of the variable x;, Y, a;x;: linear term for each variable, Y.¥_; a;;x?: pure
quadratic terms, ¥, Z?:i +1@ij X; Xj: interaction terms (combined effects of two variables acting
together), e; random error.

The basic idea behind RSM is to create a mathematical model that relates the response of a system
to its input variables. This model can then be used to identify the optimal settings for the input
variables to achieve the desired response. RSM involves a series of experimental designs that are
used to collect data on the response of the system to different combinations of input variables. The
data is then analyzed using statistical techniques to create a mathematical model that describes the
relationship between the input variables and the response. It is used to improve the accuracy and
to explore curvature and interactions efficiently. Once the model is created, it can be used to
optimize the system by identifying the input variable settings that will produce the desired
response. This can help to improve product quality, reduce costs, or increase efficiency. Overall,
RSM is a powerful tool for designing and optimizing complex systems. It can help to reduce the time
and cost associated with trial-and-error experimentation and can lead to significant improvements
in product or process performance.

2.3 Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost)is a machine learning algorithm for solving complex
nonlinear relationships with more accuracy, speed, and ability. It is mainly used to handle nonlinear
interactions, regularization to reduce overfitting and high performance with small to large datasets.
In the present paper, integrated XGBoost with Taguchi design to enhance the accuracy. It helpful to
predict the unseen combination of parameter enabling virtual experimentation. It gives rank to the
input parameters based on their influence on response variable. Hence, the experimental data has
trained using XGBoost Regressor model. The implementation of XGBoost, involves Python libraries
such as xgboost and scikit-learn. For XGBoost, the XGBRegressor class is commonly used, with key
hyperparameters including n_estimators, max_depth learning_rate, subsample and regularization
terms like reg_alpha and reg_lambda. These settings help control overfitting and improve model
generalization.
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2.4 Support Vector Regression (SVR)

Support Vector Regression (SVR)is a supervised machine learning algorithm that extends Support
Vector Machines (SVM) to predict continuous numerical values. Unlike traditional regression, SVR
tries to find a function that approximates the data within a specified margin of tolerance (g) while
minimizing model complexity and penalizing errors beyond the margin. It is particularly useful
when you want accurate predictions with high generalization ability even on non-linear data, by
using kernel functions. SVR is implemented using sklearn.svm.SVR, where important
hyperparameters include kernel (e.g., 'rbf’, 'linear"), C (regularization strength), epsilon (margin of
tolerance), and gamma (kernel coefficient). These parameters influence the model’s flexibility and
error tolerance.

2.5 Random Forest Regression

Random Forest Regression is an ensemble learning method that creatively integrates the
predictions of multiple decision trees to produce a reliable, accurate, and high-performance
regression model. By combining the outputs of several individually weak learners, it constructs a
powerful predictive framework capable of capturing complex and non-linear patterns within data.
Random Forest Regression is built using sklearn. ensemble. Random Forest Regressor, with
hyperparameters such as n_estimators, max_depth, max_features, min_samples_split, and
bootstrap. These control the ensemble size, tree complexity, and feature sampling.

This study adopts a range of integrated methodologies including Taguchi-based linear models,
Response Surface Methodology (RSM), Support Vector Regression (SVR), XGBoost, and Random
Forest regression to compare their performance metrics. The objective is to identify the approach
that yields the lowest prediction error, thereby reducing both the experimental cost and the time
required for testing. To divide the dataset into subsets for model training and performance testing.
This ensures that the model is trained on one part of the data and tested on unseen data to measure
generalization ability. Hyper parameter tuning for all three models is often performed using grid
search or randomized search to optimize performance metrics like MAE, RMSE, and R

3. Data Acquisition

Traditional methods like Taguchi and RSM are limited to linear and low-order interactions.
Machine learning models (SVR, XGBoost, Random Forest) capture nonlinear patterns and high-
order interactions, improving prediction accuracy. With only 27 runs from a 3”3 factorial design,
these models extract maximum insight without requiring large datasets.

This hybrid strategy blends the strengths of classical design with modern predictive power ideal
for optimizing manufacturing processes, reducing variability, and achieving consistent quality. The
foundational experiments conducted by Srinivasa Athreya and Venkatesh (2012) aimed to identify
optimal machining parameters, namely cutting speed (X;), depth of cut (X;), and feed rate (X3) to
improve surface roughness during facing operations on mild steel components. These parameters
were categorized into three levels: low (-1), medium (0), and high (1), and evaluated using a lathe
machine equipped with a portable surface tester. Building on this work, Rajyalakshmi and
Nageswara Rao (2018) introduced a novel enhancement to the Taguchi method by incorporating a
fictitious parameter (X,), which allowed for a more comprehensive analysis of variability in the
output response. Their study employed Analysis of Variance (ANOVA) to quantify the contribution
of each factor to surface roughness. The results revealed that cutting speed (X;) contributed
71.49%, depth of cut (X;) 4.18%, feed rate (X3) 11.16%, and the fictitious parameter (X4) 13.17%
to the total variation. Notably, the error percentage was found to be zero when the fictitious
parameter was included, whereas its exclusion resulted in a 13.17% error equivalent to its
contribution highlighting its significance in the model. According to their findings, the optimal
surface roughness value was 2.62 um, achieved at a cutting speed of 960 rpm, depth of cut of
0.3 mm, and feed rate of 130 mm/min. The expected range of surface roughness under these
conditions was estimated between 2.349 and 2.768 um.

Expanding upon these prior studies, the present research integrates both statistical and machine
learning methodologies including Taguchi design, Response Surface Methodology (RSM), Support
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Vector Regression (SVR), XGBoost, and Random Forest regression—to evaluate and compare their
effectiveness in optimizing process performance. Each method was assessed based on its predictive
accuracy and ability to model complex interactions among machining parameters. This integrated
approach provides a robust framework for parameter optimization, offering deeper insights into
the relationships between input variables and surface quality outcomes.

4. Results and Analysis

This study integrates multiple Modeling techniques to establish a comprehensive predictive
framework. Specifically, it compares the performance of five regression models: Taguchi-based
linear model, Response Surface Methodology (RSM), Support Vector Regression (SVR), XGboost
Regression, and Random Forest Regression. A paired t-test was conducted to compare the
experimental (test) data and the corresponding values predicted by each model. The calculated t-
statistic was smaller than the critical t-value. These results indicate that there is no statistically
significant difference between the experimental values and the predicted values of the mentioned
models. In other words, the model’s predictions are statistically consistent with the observed data,
demonstrating that successfully captured the underlying relationship within the dataset. Although
five different modelling approaches - XGboost, Support Vector Regression (SVR), Random Forest
(RF), Response Surface Methodology (RSM), and Taguchi method were compared, no statistically
significant differences were found among them based on the selected error indicators. Figures 1
through 5 illustrate the comparison between actual and predicted values for each model: XGboost
(Figure 1), SVR (Figure 2), Random Forest (Figure 3), RSM (Figure 4), and the Taguchi-based model
(Figure 5). Among all models, XGboost shows an exceptional alignment with the actual
experimental data, indicating its superior predictive accuracy. Table I further highlights the
experimental versus predicted values, demonstrating the effectiveness of each model, with
XGboost outperforming the rest. Table (2) Provides the error analysis for each model.

4.1 Sensitivity Analysis

The correlation coefficient (r) measures the strength of the linear relationship between the model
predictions and the experimental (test) data.

o XGBoost (r = 0.99) shows an almost perfect linear relationship with the test data — it predicts
values that very closely follow the observed trend.

e RF (r=0.95) and SVR (r = 0.8913) also demonstrate strong positive correlations, suggesting
reliable predictive ability.

e RSM (r = 0.8974) performs comparably to SVR, though slightly less correlated.

e Taguchi method (r = 0.59) shows only moderate correlation, implying that it captures the
general trend but with considerable deviation from the actual test data.

XGBoost Model
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Fig. 1. XGBoost model
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Support Vector Regression model
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Taguchi based Linear Model
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The error values for each model (XGBoost, Support Vector Regression, Random Forest, Response
Surface Methodology, and Taguchi-based Linear Model) were computed using the test dataset,
based on the difference between the predicted and actual values. Each model performance was

evaluated using the following error metrics,

n
Mean Absolute Error (MAE) = le’i — 9l (3)
=
where, y;: observed values, §;: predicted values, n: number of observations.
15 (4)
Mean Squared Error (MSE) = —Z(yi —9,)?
n i=1
L (5)
Root Mean Squared Error (RMSE) = EZ(yi —9,)?
i=1
n
100 Vi — Vi (6)
Mean absolute percentage error (MAPE) = z | |
Coefficient of determination (R?) = 1 — E‘,fl(y—‘_y_l) (7)
Yic (vi—¥)?
Table 1. Experimental and predicted values using different regression models
PREDICTED  PREDICTED  PREDICTED  PREDICTED
Tpsy  PREDICTED 2 3) 4) )
S.NO. X1 X2 X3 X4 DATA €8] Support Random Response Taguchi
XGBOOST Vector Forest Surface based linear
Regression Regression Method model
1 -1 -1 -1 -1 3.45 3.450144 3.385071 3.5339 3.253852 3.405593
2 -1 -1 0 0 3.506 3.505383 3.570623 3.7098 3.816685 3.840481
3 -1 -1 1 1 5.04 5.037933 4.354874 4.6458 4.893519 4.27537
4 -1 0 -1 0 2.96 2.96144 3.024591 3.2573 2.864519 3.430481
5 -1 0 0 1 3.82 3.819308 3.755149 3.8261 3.972685 3.86537
6 -1 0 1 -1 3.382 3.380852 3.43307 3.562 3.498352 3.444259
7 -1 1 -1 1 3.982 3.981829 3.505373 3.8274 3.778519 3.45537
8 -1 1 0 -1 3.41 3.410325 3.34553 3.4301 3.391519 3.034259
9 -1 1 1 0 4.25 4.250471 3.918938 3.992 4.330352 3.469148
10 0 -1 -1 -1 2.876 2.877862 3.227187 3.133 3.13763 3.179926
11 0 -1 0 0 3.26 3.260162 3.324519 3.3564 3.24763 3.614815
12 0 -1 1 1 4.35 4.34951 4.012648 3.9123 3.87163 4.049704
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0 -1 0 2.62  2.619565 2.656429 2.7106 2.49363 3.204815
0 0 1 248  2.482483 3.337663 29611 3.088963 3.639704
0 1 -1 2.74  2.739819  2.804515 2.8173 2.556296  3.218593
1 -1 1 2.87 2.87007 3.104081 2.9498 3.032963 3.229704
1 0 -1 257  2.571641 2.752938 2.741 2.58763 2.808593
1 1 0 3.264 3.262257  3.199616 3.1598 3.07363 3.243481
4.14 4.13794 3.548494 3.8808 4.074519  2.954259
-1 0 0 4.03  4.030339  3.491223 3.9103 3.731685 3.389148
-1 1 1 3.278 3.278382 3.541257 3.6593 3.902852 3.824037
0 -1 0 2774 2773647  2.989197 29778 3.055852 2.979148
0 0 1 4.02 4.017954  3.368106 3.6101 3.258352 3.414037
0 1 -1 2.6 2.603139 2.66463 2.7612 2.667352  2.992926
1 -1 1 3.3 3.300311 3.23555 3.2762 3.340519  3.004037
1 0 -1 2836 2.834259  2.771423 2.852 2.836852  2.582926
1 1 0 2.76 2.76097 2.824781 2.8824 2.870019  3.017815

R R R R R R RRPROOoOOoOOoO OO
.
—_
1
—_
1
—_

The error analysis confirms that XGBoost is the most accurate and robust model among all
considered. Its ability to consistently predict values very close to the actual test data across all
conditions makes it the best choice for this dataset. Traditional linear or response surface methods

show significant limitations, especially in handling nonlinearities or interactions in the input
features.

o XGBoost clearly outperforms all other models, achieving the lowest error (MAE: 0.007, RMSE:
0.009) and a near-perfect R? score (~0.9999), indicating that it almost perfectly fits the data.
Highly sensitive to input variation but robust against noise.

e SupportVector Regression (SVR) and Random Forest Regression also show strong predictive
capabilities with high R? scores and relatively low errors, making them reliable alternatives.
Acceptable performance but moderately less robust under varying conditions.

e Response Surface Method (RSM) performs moderately well but not as accurately as SVR or
XGBoost. It Performs reasonably well but limited in modeling nonlinear effects.

e The Taguchi-based Linear Model shows the least accuracy, indicating thatlinear assumptions
may not capture the complexity of the data.

e The dataset contains only 27 design points. XGBoost’s boosting mechanism is better suited
to extracting signal from limited data, whereas Random Forest may suffer from variance and
instability due to its reliance on random sampling.

Table 2. Comparison of prediction errors for different modelling approaches
E}}ISS)R ER(I;?R ERROR
TEST ERROR (1) ERROR  (5) Taguchi
SNO. X1 X2 X3 X4 parp  xgpoosr ~ Support  Random eyt ced linear
Vector Forest model
Regression  Model

1 -1 -1 -1 -1 3.45 0.00417 1.881992 2.4313 5.6855 1.2872

2 -1 -1 0 0 3.506 0.01759 1.843218 5.8118 8.8615 9.5403

3 -1 -1 1 1 5.04 0.04101 13.593771 7.8218 2.9064 15.171

4 -1 0 -1 0 2.96 0.04866 2.182137 10.044 3.2257 15.895

5 -1 0 0 1 3.82 0.01813 1.69768 0.1592 3.997 1.1877

6 -1 0 1 -1 3.382 0.03393 1.510066 5.3223 3.4403 1.8409

7 -1 1 -1 1 3.982 0.00429 11.969532 3.882 5.11 13.225

8 -101 0o -1 341 0.00954 1.890602 0.5894 0.542 11.019

9 -101 0 4.25 0.01109 7.789693 6.0701 1.8906 18.373

10 -1 -1 A1 2.876 0.06474 12.210941 89374 9.097 10.568

11 -10 0 3.26 0.00498 1.97912 29571 0.3795 10.884
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12 o -1 1 1 4.35 0.01126 7.755219 10.061 10.997 6.9034
13 0 0O -1 0 2.62 0.01662 1.390413 3.4595 7.1134 22.321
14 0 0 0 1 2.48 0.10011 34583173  19.399 24.555 46.762
15 0 0 1 -1 2.74 0.00662 2.354546 2.8204 6.7045 17.467
16 0 1 -1 1 2.87 0.00243 8.156142 2.7812 5.6782 12.533
17 0 1 0 -1 2.57 0.06384 7.118204 6.6553 0.686 9.2838
18 0 1 0 3.264 0.05341 1.972538 3.1918 5.8324 0.6286
19 1 -1 -1 -1 4.14 0.04976 14.287578  6.2609 1.5817 28.641
20 1 -1 0 0 4.03 0.00841 13.369167  2.9692 7.4024 15.902
21 1 -1 1 1 3.278 0.01165 8.031029 11.632 19.062 16.658
22 1 0O -1 o0 2.774 0.01273 7.75765 7.3453 10.16 7.3954
23 1 0 0 1 4.02 0.05089 16.216281  10.197 18.946 15.074
24 1 0 1 -1 2.6 0.12073 2.485776 6.2008 2.5905 15.113
25 1 1 -1 1 3.3 0.00941 1.953034 0.7224 1.2278 8.9686
26 1 1 0 -1 2836 0.0614 2.277031 0.5642 0.03 8.9236
27 1 1 1 0 2.76 0.03513 2.347153 4.4355 3.9862 9.3411

Table 3. Comparison of key performance metrics

S. No. MODEL MAE | MSE | RMSE |  MAPE | R
: ¥ ¥ ¥ ¥
1 Taguchi based 0.4292 0.2690 0.5186 13% 0.355
Linear Model
Response o
Subapolse | 02101 0.0819 0.2862 6.36% 0.8037
g SupportVector ., 0.115 0.338 7.06% 0.7247
I‘egreSSIOn
4 RXGbOO.St 0.001 0.000002  0.001326  0.0323%  0.9999
egression
5  RandomForest ., ., 0.4304 0.6561 17.58% 0.1755
Regression

5. Conclusion

The results clearly demonstrate that XGBoost Regression offers the best predictive performance
among the evaluated models, with exceptionally low error values (MAE: 0.001, MSE: 0.000002,
RMSE: 0.001326, MAPE: 0.0323%) and an R? of 0.9999, indicating near-perfect correlation with
actual values. Importantly, the predicted optimum value from XGBoost is 2.48, which falls well
within the target range of 2.349 to 2.768 established by previous studies. This value is also closer
to the ideal surface roughness compared to prior research, which reported an optimum of 2.62.
This suggests that XGBoost not only provides a more accurate model but also identifies more
optimal conditions all’3’ factors at medium levels for minimizing surface roughness. Furthermore,
although other models (like RSM and SVR) also produced predictions within the acceptable range,
some yielded slightly higher optimum response values than desired. XGBoost can be considered
the most accurate model for this specific dataset, showing the strongest agreement with the
experimental results. However, its generalization to new or unseen data cannot be guaranteed
without further validation steps such as:

e (ross-validation or external test datasets,

o Sensitivity and robustness analyses, and

e Hyperparameter optimization with regularization to prevent overfitting.
From an engineering point, while XGBoost offers high accuracy and flexibility, it should be applied
with caution in experimental studies involving limited data. Incorporating larger datasets, applying
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regularization techniques, and conducting sensitivity or uncertainty analyses are essential to
ensure reliable predictions. Future work should focus on integrating hybrid models and ensemble
averaging to achieve a balance between prediction accuracy and physical interpretability.
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