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Article Info  Abstract 

Article History: 
 Over recent years, the design of experiments has emerged as a dynamic research 

field, attracting significant attention from scholars and practitioners. Experimental 
outcomes inherently exhibit variability due to measurement errors and the 
complex, non-linear behavior of system responses influenced by unidentified 
input factors. Within this context, the Taguchi method—with its use of orthogonal 
arrays—offers an effective framework for identifying optimal input parameters 
with a reduced number of experiments, typically validated through empirical test 
data. Conventional statistical techniques, such as the modified Taguchi model and 
response surface methodology, remain widely employed for parameter estimation 
and optimization. However, recent advances in machine learning present powerful 
alternatives. In this study, support vector regression, random forest regression, 
and XGBoost regression models were compared with traditional approaches to 
assess their relative efficiencies. The machine learning–based methodologies 
demonstrated superior predictive accuracy while significantly reducing 
experimental costs, preserving essential process insights, and minimizing 
performance variability. Among these models, the XGBoost regression approach 
delivered the most reliable performance, exhibiting the lowest prediction error 
and an exceptionally high coefficient of determination (R² = 0.99).  
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1. Introduction 

Taguchi introduced a structured approach using orthogonal arrays that significantly reduces the 
number of experiments required while still capturing essential information from a full factorial 
design. Taguchi introduced a structured approach using orthogonal arrays that significantly reduce 
the number of experiments required while still capturing essential information from a full factorial 
design. The Taguchi method is one of the most widely used statistical techniques for improving the 
quality of manufactured products. According to Taguchi, the selection of appropriate control 
factors can effectively nullify noise factors. Each test run in the Taguchi method is classified into 
low (–1), medium (0), and high (1) levels of input process parameters. 

Bhattacharya [1] explored the use of Response Surface Methodology (RSM) in pharmaceutical 
applications, providing valuable insights relevant to the present work. Cui et al. [2] optimized the 
physical and mechanical properties of spline surfaces using the Taguchi approach. Mounika et al. 
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[3] optimized friction welding parameters using modifications in Taguchi, fuzzy logic, and response 
surface methodologies. Panigrahi et al. [4] employed an integrated Taguchi and machine-learning-
based optimization approach to determine the optimal design parameters of a trapezoidal solar 
cooker while minimizing heat loss. Rajyalakshmi et al. [5] performed a comparative evaluation of 
the Taguchi method, Box–Behnken Design (BBD), and Central Composite Design (CCD) for 
optimizing process parameters involving four factors at three levels. Their findings show that 
although the Taguchi method is cost-effective, BBD and CCD offer superior accuracy and precision. 
Rajyalakshmi et al. [5] also identified optimal parameters for Chemical Oxygen Demand (COD) 
reduction and decolorization efficiency using multi-objective optimization in Fenton oxidation 
processes, supported by strong correlations between empirical model predictions and 
experimental data. 
Romelin et al. [6] reported that Taguchi’s L9 array effectively identified optimal design points for 
hydraulic ram pump performance. Singhavavelu et al. [7] reported the use of an L9 orthogonal 
array for four factors at three levels. Panigrahi et al. [8] presented  employed Taguchi and ML in 
solar cooker optimization .Ross [9] reported the use of an L9 orthogonal array for four factors at 
three levels. Rajyalakshmi [10] presented a simple methodology and validated it using existing 
experimental results based on the modified Taguchi method. Rajyalakshmi and Nageswara Rao 
[11] applied a modified Taguchi methodology to identify the optimum parameters influencing weld 
dilution in ST-37 plates. Samuel et al. [12] demonstrated significant improvements in the 
mechanical properties of biomaterials using heat-treatment optimization through Taguchi and 
machine-learning techniques. 
Athreya and Venkatesh [13] provided foundational work upon which the present study is built. 
Varalakshmi et al. [14] focused on optimizing responses using various statistical design methods. 
Varalakshmi et al. [15] investigated multi-response optimization of agricultural residues using a 
modified Taguchi approach combined with Chauvenet’s criterion. Rajyalakshmi and Nageswara 
Rao [16] .Lestari et al. [17] studied the influence of fused deposition modeling (FDM) parameters 
on printing time and socket weight in transtibial prosthetic components using the Taguchi method. 
Jou et al. [18] developed predictive defect models in die-casting using Artificial Neural Networks, 
Support Vector Machines, and Random Forests combined with Taguchi methods. 

Traditional statistical techniques often fail to adequately capture nonlinear behaviour, motivating 
the present investigation. While traditional statistical techniques such as linear models and lower-
order interaction frameworks have been widely used, they often fall short in capturing the intricate 
nonlinear relationships present in complex systems. To address these limitations, this research 
extends previous models by integrating advanced machine learning algorithms capable of 
modeling higher-order and nonlinear interactions among variables. This study systematically 
compares traditional statistical models (Taguchi, RSM) with modern machine learning algorithms 
(SVR, XGBoost, Random Forest) on a unified dataset. This hybrid approach is rarely presented in 
machining literature with such rigor and reproducibility. Industrial experiments often operate 
under resource constraints, limiting the number of design points. By demonstrating how different 
models perform on a 27-run factorial design, provide practical guidance for real-world applications 
where data is limited but precision is critical. 

The experimental framework utilizes the test data originally developed by Srinivasa Athreya and 
Venkatesh, with modifications aligned to the suggestions of Rajyalakshmi and Nageswararao. A 
comparative analysis was conducted across several predictive and optimization techniques, 
including Response Surface Methodology (RSM), Support Vector Regression (SVR), XGBoost, and 
Taguchi-based linear models. Each method was evaluated based on its predictive accuracy, 
quantified through metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE), and the coefficient of determination (R²). Graphical 
representations were employed to visualize the performance differences and error margins 
between predicted and actual values. 

Among the models tested, XGBoost emerged as the most accurate, demonstrating the lowest 
prediction error and the highest R² value. This indicates its superior capability in capturing 
complex patterns and delivering precise predictions. The study highlights the effectiveness of 
machine learning techniques in enhancing process modelling and optimization, especially when 
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traditional statistical methods are constrained by linear assumptions. By integrating these 
advanced approaches into the existing analytical framework, the research offers a robust 
methodology for improving predictive performance in engineering and scientific applications. 

2. Methodology 

2.1 Taguchi Method  

Taguchi designed a method to improve the quality of manufactured goods. According to him, way 
of selecting appropriate control factors can nullify the noise factors. Ross(9) suggested an 
appropriate orthogonal array (OA) to perform experiments is as follows. 

NT=1+nP(nL-1) (1) 

NT: Total number of experimental runs required; np: Number of parameters (or factors) bei ng 
studied; nL: Number of levels for each parameter; 1: Represents the baseline or control condition 
(reference level). 

2.2 Response Surface Methodology (RSM)  

Response Surface Methodology (RSM) is a statistical technique that is used to model and optimize 
complex systems. It is commonly used in the fields of engineering, science, and business to design 
and improve products or processes. RSM provides a suitable approximation using the following 
form.  

  𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ 𝑎𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

𝑘

𝑖=1

+ ∑ ∑ 𝑎𝑖𝑗

𝑘

𝑗=𝑖+1

𝑥𝑖

𝑘

𝑖=1

𝑥𝑗 + 𝑒 
(2) 

a0: Constant, ai: coefficient of the variable xi, ∑ 𝑎𝑖𝑥𝑖: linear term for each variable, ∑ 𝑎𝑖𝑖𝑥𝑖
2𝑘

𝑖=1 : pure 

quadratic terms, ∑ ∑ 𝑎𝑖𝑗
𝑘
𝑗=𝑖+1 𝑥𝑖

𝑘
𝑖=1 𝑥𝑗: interaction terms (combined effects of two variables acting 

together), e; random error. 

The basic idea behind RSM is to create a mathematical model that relates the response of a system 
to its input variables. This model can then be used to identify the optimal settings for the input 
variables to achieve the desired response. RSM involves a series of experimental designs that are 
used to collect data on the response of the system to different combinations of input variables. The 
data is then analyzed using statistical techniques to create a mathematical model that describes the 
relationship between the input variables and the response. It is used to improve the accuracy and 
to explore curvature and interactions efficiently. Once the model is created, it can be used to 
optimize the system by identifying the input variable settings that will produce the desired 
response. This can help to improve product quality, reduce costs, or increase efficiency. Overall, 
RSM is a powerful tool for designing and optimizing complex systems. It can help to reduce the time 
and cost associated with trial-and-error experimentation and can lead to significant improvements 
in product or process performance. 

2.3 Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost)is a machine learning algorithm for solving complex 
nonlinear relationships with more accuracy, speed, and ability. It is mainly used to handle nonlinear 
interactions, regularization to reduce overfitting and high performance with small to large datasets. 
In the present paper, integrated XGBoost with Taguchi design to enhance the accuracy. It helpful to 
predict the unseen combination of parameter enabling virtual experimentation. It gives rank to the 
input parameters based on their influence on response variable. Hence, the experimental data has 
trained using XGBoost Regressor model. The implementation of XGBoost, involves Python libraries 
such as xgboost and scikit-learn. For XGBoost, the XGBRegressor class is commonly used, with key 
hyperparameters including n_estimators, max_depth learning_rate, subsample and regularization 
terms like reg_alpha and reg_lambda. These settings help control overfitting and improve model 
generalization.  
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2.4 Support Vector Regression (SVR) 

Support Vector Regression (SVR)is a supervised machine learning algorithm that extends Support 
Vector Machines (SVM) to predict continuous numerical values. Unlike traditional regression, SVR 
tries to find a function that approximates the data within a specified margin of tolerance (ε) while 
minimizing model complexity and penalizing errors beyond the margin. It is particularly useful 
when you want accurate predictions with high generalization ability even on non-linear data, by 
using kernel functions. SVR is implemented using sklearn.svm.SVR, where important 
hyperparameters include kernel (e.g., 'rbf', 'linear'), C (regularization strength), epsilon (margin of 
tolerance), and gamma (kernel coefficient). These parameters influence the model’s flexibility and 
error tolerance.  

2.5 Random Forest Regression 

Random Forest Regression is an ensemble learning method that creatively integrates the 
predictions of multiple decision trees to produce a reliable, accurate, and high-performance 
regression model. By combining the outputs of several individually weak learners, it constructs a 
powerful predictive framework capable of capturing complex and non-linear patterns within data. 
Random Forest Regression is built using sklearn. ensemble. Random Forest Regressor, with 
hyperparameters such as n_estimators, max_depth, max_features, min_samples_split, and 
bootstrap. These control the ensemble size, tree complexity, and feature sampling.  

This study adopts a range of integrated methodologies including Taguchi-based linear models, 
Response Surface Methodology (RSM), Support Vector Regression (SVR), XGBoost, and Random 
Forest regression to compare their performance metrics. The objective is to identify the approach 
that yields the lowest prediction error, thereby reducing both the experimental cost and the time 
required for testing. To divide the dataset into subsets for model training and performance testing. 
This ensures that the model is trained on one part of the data and tested on unseen data to measure 
generalization ability. Hyper parameter tuning for all three models is often performed using grid 
search or randomized search to optimize performance metrics like MAE, RMSE, and R². 

3. Data Acquisition 

Traditional methods like Taguchi and RSM are limited to linear and low-order interactions. 
Machine learning models (SVR, XGBoost, Random Forest) capture nonlinear patterns and high-
order interactions, improving prediction accuracy. With only 27 runs from a 3^3 factorial design, 
these models extract maximum insight without requiring large datasets.  

This hybrid strategy blends the strengths of classical design with modern predictive power ideal 
for optimizing manufacturing processes, reducing variability, and achieving consistent quality. The 
foundational experiments conducted by Srinivasa Athreya and Venkatesh (2012) aimed to identify 
optimal machining parameters, namely cutting speed (X₁), depth of cut (X₂), and feed rate (X₃) to 
improve surface roughness during facing operations on mild steel components. These parameters 
were categorized into three levels: low (−1), medium (0), and high (1), and evaluated using a lathe 
machine equipped with a portable surface tester. Building on this work, Rajyalakshmi and 
Nageswara Rao (2018) introduced a novel enhancement to the Taguchi method by incorporating a 
fictitious parameter (X₄), which allowed for a more comprehensive analysis of variability in the 
output response. Their study employed Analysis of Variance (ANOVA) to quantify the contribution 
of each factor to surface roughness. The results revealed that cutting speed (X₁) contributed 
71.49%, depth of cut (X₂) 4.18%, feed rate (X₃) 11.16%, and the fictitious parameter (X₄) 13.17% 
to the total variation. Notably, the error percentage was found to be zero when the fictitious 
parameter was included, whereas its exclusion resulted in a 13.17% error equivalent to its 
contribution highlighting its significance in the model. According to their findings, the optimal 
surface roughness value was 2.62 μm, achieved at a cutting speed of 960 rpm, depth of cut of 
0.3 mm, and feed rate of 130 mm/min. The expected range of surface roughness under these 
conditions was estimated between 2.349 and 2.768 μm. 

Expanding upon these prior studies, the present research integrates both statistical and machine 
learning methodologies including Taguchi design, Response Surface Methodology (RSM), Support 
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Vector Regression (SVR), XGBoost, and Random Forest regression—to evaluate and compare their 
effectiveness in optimizing process performance. Each method was assessed based on its predictive 
accuracy and ability to model complex interactions among machining parameters. This integrated 
approach provides a robust framework for parameter optimization, offering deeper insights into 
the relationships between input variables and surface quality outcomes. 

4. Results and Analysis 

This study integrates multiple Modeling techniques to establish a comprehensive predictive 
framework. Specifically, it compares the performance of five regression models: Taguchi-based 
linear model, Response Surface Methodology (RSM), Support Vector Regression (SVR), XGboost 
Regression, and Random Forest Regression. A paired t-test was conducted to compare the 
experimental (test) data and the corresponding values predicted by each model. The calculated t-
statistic was smaller than the critical t-value. These results indicate that there is no statistically 
significant difference between the experimental values and the predicted values of the mentioned 
models. In other words, the model’s predictions are statistically consistent with the observed data, 
demonstrating that successfully captured the underlying relationship within the dataset. Although 
five different modelling approaches - XGboost, Support Vector Regression (SVR), Random Forest 
(RF), Response Surface Methodology (RSM), and Taguchi method were compared, no statistically 
significant differences were found among them based on the selected error indicators.  Figures 1 
through 5 illustrate the comparison between actual and predicted values for each model: XGboost 
(Figure 1), SVR (Figure 2), Random Forest (Figure 3), RSM (Figure 4), and the Taguchi-based model 
(Figure 5). Among all models, XGboost shows an exceptional alignment with the actual 
experimental data, indicating its superior predictive accuracy. Table I further highlights the 
experimental versus predicted values, demonstrating the effectiveness of each model, with 
XGboost outperforming the rest. Table (2) Provides the error analysis for each model.  

 4.1 Sensitivity Analysis 

The correlation coefficient (r) measures the strength of the linear relationship between the model 
predictions and the experimental (test) data. 

• XGBoost (r = 0.99) shows an almost perfect linear relationship with the test data — it predicts 
values that very closely follow the observed trend. 

• RF (r = 0.95) and SVR (r = 0.8913) also demonstrate strong positive correlations, suggesting 
reliable predictive ability. 

• RSM (r = 0.8974) performs comparably to SVR, though slightly less correlated. 
• Taguchi method (r = 0.59) shows only moderate correlation, implying that it captures the 

general trend but with considerable deviation from the actual test data. 

 
Fig. 1. XGBoost model 
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Fig. 3. Random forest regression 

 
Fig. 4. Response surface methodology 
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Fig. 5. Taguchi based linear model 

The error values for each model (XGBoost, Support Vector Regression, Random Forest, Response 
Surface Methodology, and Taguchi-based Linear Model) were computed using the test dataset, 
based on the difference between the predicted and actual values. Each model performance was 
evaluated using the following error metrics,  

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
(3) 

 where,     yi: observed values, ŷi: predicted values, n: number of observations. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2 

𝑛

𝑖=1

 
(4) 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

(5) 

𝑀𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 (𝑀𝐴𝑃𝐸) =
100

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1

 
(6) 

Coefficient of determination ( 𝑅2) = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 (7) 

Table 1. Experimental and predicted values using different regression models 

S.NO. X1 X2 X3 X4 
TEST 
DATA 

PREDICTED 
(1) 

XGBOOST 

PREDICTED 
(2) 

Support 
Vector 

Regression 

PREDICTED 
(3) 

Random 
Forest 

Regression 

PREDICTED 
(4) 

Response 
Surface 
Method 

PREDICTED 
(5) 

Taguchi 
based linear 

model 

1 -1 -1 -1 -1 3.45 3.450144 3.385071 3.5339 3.253852 3.405593 

2 -1 -1 0 0 3.506 3.505383 3.570623 3.7098 3.816685 3.840481 

3 -1 -1 1 1 5.04 5.037933 4.354874 4.6458 4.893519 4.27537 

4 -1 0 -1 0 2.96 2.96144 3.024591 3.2573 2.864519 3.430481 

5 -1 0 0 1 3.82 3.819308 3.755149 3.8261 3.972685 3.86537 

6 -1 0 1 -1 3.382 3.380852 3.43307 3.562 3.498352 3.444259 

7 -1 1 -1 1 3.982 3.981829 3.505373 3.8274 3.778519 3.45537 

8 -1 1 0 -1 3.41 3.410325 3.34553 3.4301 3.391519 3.034259 

9 -1 1 1 0 4.25 4.250471 3.918938 3.992 4.330352 3.469148 

10 0 -1 -1 -1 2.876 2.877862 3.227187 3.133 3.13763 3.179926 

11 0 -1 0 0 3.26 3.260162 3.324519 3.3564 3.24763 3.614815 

12 0 -1 1 1 4.35 4.34951 4.012648 3.9123 3.87163 4.049704 
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13 0 0 -1 0 2.62 2.619565 2.656429 2.7106 2.49363 3.204815 

14 0 0 0 1 2.48 2.482483 3.337663 2.9611 3.088963 3.639704 

15 0 0 1 -1 2.74 2.739819 2.804515 2.8173 2.556296 3.218593 

16 0 1 -1 1 2.87 2.87007 3.104081 2.9498 3.032963 3.229704 

17 0 1 0 -1 2.57 2.571641 2.752938 2.741 2.58763 2.808593 

18 0 1 1 0 3.264 3.262257 3.199616 3.1598 3.07363 3.243481 

19 1 -1 -1 -1 4.14 4.13794 3.548494 3.8808 4.074519 2.954259 

20 1 -1 0 0 4.03 4.030339 3.491223 3.9103 3.731685 3.389148 

21 1 -1 1 1 3.278 3.278382 3.541257 3.6593 3.902852 3.824037 

22 1 0 -1 0 2.774 2.773647 2.989197 2.9778 3.055852 2.979148 

23 1 0 0 1 4.02 4.017954 3.368106 3.6101 3.258352 3.414037 

24 1 0 1 -1 2.6 2.603139 2.66463 2.7612 2.667352 2.992926 

25 1 1 -1 1 3.3 3.300311 3.23555 3.2762 3.340519 3.004037 

26 1 1 0 -1 2.836 2.834259 2.771423 2.852 2.836852 2.582926 

27 1 1 1 0 2.76 2.76097 2.824781 2.8824 2.870019 3.017815 
 

The error analysis confirms that XGBoost is the most accurate and robust model among all 
considered. Its ability to consistently predict values very close to the actual test data across all 
conditions makes it the best choice for this dataset. Traditional linear or response surface methods 
show significant limitations, especially in handling nonlinearities or interactions in the input 
features.  

• XGBoost clearly outperforms all other models, achieving the lowest error (MAE: 0.007, RMSE: 
0.009) and a near-perfect R² score (~0.9999), indicating that it almost perfectly fits the data.  
Highly sensitive to input variation but robust against noise. 

• Support Vector Regression (SVR) and Random Forest Regression also show strong predictive 
capabilities with high R² scores and relatively low errors, making them reliable alternatives. 
Acceptable performance but moderately less robust under varying conditions. 

• Response Surface Method (RSM) performs moderately well but not as accurately as SVR or 
XGBoost. It Performs reasonably well but limited in modeling nonlinear effects. 

• The Taguchi-based Linear Model shows the least accuracy, indicating that linear assumptions 
may not capture the complexity of the data.  

• The dataset contains only 27 design points. XGBoost’s boosting mechanism is better suited 
to extracting signal from limited data, whereas Random Forest may suffer from variance and 
instability due to its reliance on random sampling.  

Table 2. Comparison of prediction errors for different modelling approaches 

S.NO. X1 X2 X3 X4 
TEST 
DATA 

ERROR     (1) 
XG BOOST 

ERROR   
(2) 

Support 
Vector 

Regression 

ERROR   
(3)  

Random 
Forest  
Model 

ERROR   
(4) RSM 

ERROR 
(5) Taguchi 
based linear 

model 

1 -1 -1 -1 -1 3.45 0.00417 1.881992 2.4313 5.6855 1.2872 

2 -1 -1 0 0 3.506 0.01759 1.843218 5.8118 8.8615 9.5403 

3 -1 -1 1 1 5.04 0.04101 13.593771 7.8218 2.9064 15.171 

4 -1 0 -1 0 2.96 0.04866 2.182137 10.044 3.2257 15.895 

5 -1 0 0 1 3.82 0.01813 1.69768 0.1592 3.997 1.1877 

6 -1 0 1 -1 3.382 0.03393 1.510066 5.3223 3.4403 1.8409 

7 -1 1 -1 1 3.982 0.00429 11.969532 3.882 5.11 13.225 

8 -1 1 0 -1 3.41 0.00954 1.890602 0.5894 0.542 11.019 

9 -1 1 1 0 4.25 0.01109 7.789693 6.0701 1.8906 18.373 

10 0 -1 -1 -1 2.876 0.06474 12.210941 8.9374 9.097 10.568 

11 0 -1 0 0 3.26 0.00498 1.97912 2.9571 0.3795 10.884 
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12 0 -1 1 1 4.35 0.01126 7.755219 10.061 10.997 6.9034 

13 0 0 -1 0 2.62 0.01662 1.390413 3.4595 7.1134 22.321 

14 0 0 0 1 2.48 0.10011 34.583173 19.399 24.555 46.762 

15 0 0 1 -1 2.74 0.00662 2.354546 2.8204 6.7045 17.467 

16 0 1 -1 1 2.87 0.00243 8.156142 2.7812 5.6782 12.533 

17 0 1 0 -1 2.57 0.06384 7.118204 6.6553 0.686 9.2838 

18 0 1 1 0 3.264 0.05341 1.972538 3.1918 5.8324 0.6286 

19 1 -1 -1 -1 4.14 0.04976 14.287578 6.2609 1.5817 28.641 

20 1 -1 0 0 4.03 0.00841 13.369167 2.9692 7.4024 15.902 

21 1 -1 1 1 3.278 0.01165 8.031029 11.632 19.062 16.658 

22 1 0 -1 0 2.774 0.01273 7.75765 7.3453 10.16 7.3954 

23 1 0 0 1 4.02 0.05089 16.216281 10.197 18.946 15.074 

24 1 0 1 -1 2.6 0.12073 2.485776 6.2008 2.5905 15.113 

25 1 1 -1 1 3.3 0.00941 1.953034 0.7224 1.2278 8.9686 

26 1 1 0 -1 2.836 0.0614 2.277031 0.5642 0.03 8.9236 

27 1 1 1 0 2.76 0.03513 2.347153 4.4355 3.9862 9.3411 
 

Table 3. Comparison of key performance metrics 

5. Conclusion 

The results clearly demonstrate that XGBoost Regression offers the best predictive performance 
among the evaluated models, with exceptionally low error values (MAE: 0.001, MSE: 0.000002, 
RMSE: 0.001326, MAPE: 0.0323%) and an R² of 0.9999, indicating near-perfect correlation with 
actual values. Importantly, the predicted optimum value from XGBoost is 2.48, which falls well 
within the target range of 2.349 to 2.768 established by previous studies. This value is also closer 
to the ideal surface roughness compared to prior research, which reported an optimum of 2.62. 
This suggests that XGBoost not only provides a more accurate model but also identifies more 
optimal conditions all’3’ factors at medium levels for minimizing surface roughness. Furthermore, 
although other models (like RSM and SVR) also produced predictions within the acceptable range, 
some yielded slightly higher optimum response values than desired.  XGBoost can be considered 
the most accurate model for this specific dataset, showing the strongest agreement with the 
experimental results. However, its generalization to new or unseen data cannot be guaranteed 
without further validation steps such as: 

• Cross-validation or external test datasets, 
• Sensitivity and robustness analyses, and 
• Hyperparameter optimization with regularization to prevent overfitting. 

From an engineering point, while XGBoost offers high accuracy and flexibility, it should be applied 
with caution in experimental studies involving limited data. Incorporating larger datasets, applying 

S. No. MODEL MAE MSE RMSE MAPE R2 

1 
Taguchi based 
Linear Model 

0.4292 0.2690 0.5186 13% 0.355 

2 
Response 

Surface Method 
0.2101 0.0819 0.2862 6.36% 0.8037 

3 
Support Vector 

regression 
0.244 0.115 0.338 7.06% 0.7247 

4 
XGboost 

Regression 
0.001 0.000002 0.001326 0.0323% 0.9999 

5 
Random Forest 

Regression 
0.5463 0.4304 0.6561 17.58% 0.1755 
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regularization techniques, and conducting sensitivity or uncertainty analyses are essential to 
ensure reliable predictions. Future work should focus on integrating hybrid models and ensemble 
averaging to achieve a balance between prediction accuracy and physical interpretability. 
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