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Article Info  Abstract 

Article History: 
 Traditional damage detection methods can be costly, error-prone and labor-

intensive inspections. Artificial neural networks have been applied broadly over 
recent years because of their outstanding pattern recognition capability, which is 
suitable for structural damage detection purposes. In this research, artificial 
neural networks were developed to predict structural damage resulting from 
earthquakes. This study investigates structural defects caused by earthquake 
loading in structural components using an inclusive dataset that covers a variety 
of structural factors. Different networks were trained to detect patterns engaged 
with structural faults. These networks included a database of general feature sets 
containing structural height, different types of material, number of floors, severity 
of earthquake, damping ratio, and source of cracks for predicting damage index. 
The results of this study indicate that, an ANN with a configuration of 6-14-7-1 
possesses great potential to estimate the damage index, as evidenced by the low 
error and high correlation values. The performance and efficiency of such network 
was investigated, demonstrating both improved accuracy and efficiency. The ANN 
model obtained a correlation coefficient of 0.987 for the training set, 0.969 for the 
testing set, and 0.975 for the validation set, indicating considerable potential in 
expressing the non-linear behavior of damage to structures.  
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1. Introduction 

It is very important for the security and life of buildings to detect damage in civil structures. 
Traditional damage detection methods use visual inspection, and these criteria are expensive and 
not very reliable [1-3]. Recently, scientists have developed advanced methods such as non-
destructive testing (NDT) and computer-based approaches in search of more accurate structural 
assessments [4-5]. Damage in structures is an intricate problem and can be affected by certain 
parameters causing reduction in structural stiffness and strength. In nature, residential buildings 
are most vulnerable to catastrophic natural disasters such as typhoons, landslides and floods, 
especially earthquakes [6-9]. These hazards continually threaten buildings with robust forces like 
seismic excitation, wind pressures, and soil deformation. Because the interaction between seismic 
parameters and ground motion responses is complex and delicate, current conservative methods 
often produce ambiguous results. Artificial Neural Networks (ANNs) offer a promising option 
employing their ability to learn from historic earthquake records and detect hidden patterns within 
large-scale datasets [10-11].  
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Through historical earthquakes and structural response data, ANNs make it possible to perform 
fast and reliable damage assessments and improve post-earthquake assessment techniques. ANNs 
are broadly used in pattern identification to match pattern features, mainly due to their superior 
generalization capabilities [12-15]. ANNs can learn complex patterns and relationships from input 
data, containing structural parameters, environmental conditions, and damage information from 
the past [16-17]. Recent research findings have suggested that neural network models significantly 
outperform linear models in terms of performance [18-20]. Thus, for damage prediction, they are 
more precise and reliable than classical models. Through dataset training that takes in many factors 
affecting damage, including material properties, structural loading and environmental conditions, 
ANNs can find patterns indicative of potential damage. In addition, ANNs can continuously update 
their predictions by integrating new data. Therefore, they can always move forward to improve 
their predicting capability. 

 ANNs have been shown by several research to be effective in predicting seismic defects. For 
instance, Aloisio et al. [21] applied an ANN to evaluate seismic weakness index with a database of 
approximately 300 building structures. ANN achieved the best performance and over 85% 
accuracy in case of enough data. This study showed that the ANN can be used to detect patterns 
and to reliably classify levels of deterioration. Its strong focus on masonry structures, however, 
limits its model to be adopted for other structural forms such as bridges and high-rise buildings. 
Shehzad et al. [22] presented an innovative machine learning-based method to improve the seismic 
performance of tall buildings. The proposed model incorporated ANNs and Support Vector 
Machines (SVM) for seismic response prediction. The recommended model demonstrated a 
substantial advancement in intelligent structural design for earthquake-prone regions. In another 
study Belhadj et al. [23] established a novel ANN model as an alternative for rapid building seismic 
defect evaluation using seismic, building, and soil parameters. The results of this research 
demonstrated the remarkable accuracy of this model, placing it as a successful predictive tool and 
quick decision support system for structures affected by earthquake impacts. This novel method 
served as a pre-disaster tool for evaluating possible damage and appeared as a practical asset for 
ensuring the safety and durability of structures during earthquakes. 

Then, Xu et al. [24] established an ANN model capable of predicting the nonlinear seismic responses 
of various buildings enclosed in a group subjected to several different earthquake inputs. The 
implemented model was in an area with 2,788 buildings and 3,798 ground motions. Overall, 
compared to time history analysis, ANN demonstrated much quicker computation time and showed 
high efficiency, with errors less than 3% in a range of response measures. Jia and Wu [25] 
meanwhile proposed an ANNs-based probabilistic seismic risk assessment. They generated a set of 
data for structural defects through incremental dynamic analysis and trained an ANN to predict 
failure. By incorporating the uncertainties relating to both structural mechanics and earthquake 
action gradually into the process, they presented vulnerability curves embodying failure possibility 
limits. The results of research indicate that the proposed ANN has excellent stability and 
robustness, with a small range for the probability of structural failure. 

In a different study, Abdellatif et al. [26] presented an ANN to predict seismic response of 3D 
reinforced concrete frame buildings. In this study, the Maximum Base Shear (MBS), the Maximum 
Inter-story Drift (MIDR) and the Maximum Roof Drift Ratio (RDR) as the critical engineering 
demand parameters were predicted. Over 192,000 buildings are analyzed using the nonlinear time 
history analysis and eighty artificial ground motions to generate the dataset. The results of ANN 
model could quickly and precisely predict the seismic responses of unseen ground motions using 
the building’s characteristics and ground motions without using any finite element software. 
Moving on, Yuan et al. [27] aims to establish a seismic classifier using ANNs to enhance the accuracy 
of damage prediction and fault classification. By training the ANN, the model attempts to capture 
complex relationships between seismic inputs and structural responses, offering a more inclusive 
evaluation of possible damage. The research emphasizes the necessity for effective ANN layouts 
that balance predictive precision with computational proficiency.  
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Recent investigations highlight the potential of ANNs in predicting earthquake-induced structural 
damage while dealing with critical problems related to uncertainty and generalizability of the 
model [28-33]. Damage resulting from the earthquake is fundamentally uncertain due to 
alterations in ground motion, material characteristics, and construction quality, and existing ANN 
models struggle to directly determine these uncertainties, compromising their reliability.  

Furthermore, extensive research focuses on specific structural elements, such as reinforced 
concrete or masonry structures, restricting their applicability to other structural types like steel, 
timber, or composite structures [34-37]. While ANNs have shown quite satisfactory results in 
predicting damage, further research has to be carried out to assess comprehensively their 
effectiveness. This study seeks to address these gaps by developing models that can cope with a 
variety of structural types to improve the predictability of ANN-based predictions. The research 
includes implementing ANNs to identify damage in various structural types, such as reinforced 
concrete buildings, steel frame buildings and timber frame structures. Training data for the ANN 
was generated by computer programming. This facilitates greater and efficient generation of data 
and preprocessing. It generates damage indices by pulling together such parameters as building 
height, damage of materials, number of stories in a building, earthquake intensity, damping ratio 
and crack location. These parameters are examined for damage indications. 

2. Materials and Methods  

This section highlights the methodology of the research, which includes the application of ANNs for 
predicting damage caused by earthquakes in structural components. ANNs represent 
computational frameworks that draw inspiration from the structure and functionality of biological 
neurons, specifically the human brain [38-39]. Various types of ANNS exist with differences in how 
their neurons are connected, the computations they execute, how patterns of activity are 
transmitted, and how they learn. ANNs consist of interconnected nodes, or artificial neurons, 
organized into layers. Among the various types of neural networks, multilayer perception stands 
out as the most employed one in structural engineering. It typically comprises an input layer with 
a neuron count equivalent to the number of parameters relevant to the given problem, while an 
output layer is presented with a neuron count matching the desired number of quantities obtained 
from the inputs. The intermediate layers are referred to as hidden layers. Figure 1 illustrates a 
sample of an ANN architecture which shows the signals from the input layer passing through the 
hidden layer and arriving at the output layer. 

 
 

Fig. 1. An example of the architecture of three-
layer ANN model 

Fig. 2. Structure of an artificial neuron 

[5] 

In layers beyond the input layer, each neuron performs a computation by taking a combination of 
the outputs from the preceding layer's neurons. The structure of an artificial neuron is shown in 
Figure 2. Each input is multiplied by its respective weight before being processed at the summing 
node. Following this, neurons within the hidden layer perform calculations using a non-linear 
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function applied to their input. The sigmoid function is typically chosen for this purpose, which 
exhibits a range between 0 and 1. In accordance with the conditions of sigmoid function, the 
datasets have been scaled to fit within the range of 0 to 1 [40-41]. Since the sigmoid function 
constrains outputs to this range, it is a suitable to interpret in regression tasks with limited target 
domains.  

The Backpropagation (BP) algorithm is broadly applied in ANNs due to its ability to describe 
complicated nonlinear relationships in mathematical terms. Its functionality is evaluated based on 
a performance metric intended to reduce the Mean Square Error (MSE). This algorithm 
progressively reduces the difference between the predicted by network and actual outputs until a 
satisfactory level of accuracy is attained with the training dataset. The MSE calculates this error by 
contrasting the goal output with the output generated by network. This algorithm adjusts the 
weights and biases of the ANN to reduce the average error between predicted and actual values. 
The refining process continues until the error is decreased to a satisfactory level. When the network 
is trained, it is tested with new datasets, and the outcomes are compared with actual results for 
validation. In this study, the backpropagation algorithm is employed to optimize the connection 
weights of neural network. 

Figure 3 shows the workflow of the proposed research demonstrating both the development and 
validation of the ANN model and its application for emergency earthquake damage response. The 
flowchart is separated into two main phases. Phase A is model development and validation. This 
phase demonstrates the offline process of preparing and validating the ANN model. The dataset is 
first collected and pre-processed. To ensure the strength and reliability of the ANN predictions, 10-
fold cross-validation is employed. The dataset is split into ten folds, with nine folds used for training 
and one for validation in each iteration. Performance metrics such as MSE, RMSE, AE, and R² are 
calculated for each fold. This step validates the stability and generalization capability of the ANN 
before implementation. The final trained ANN model (architecture 6–14–7–1) is saved for later use 
in real-time applications. In phase B, the emergency damage response application is considered. 
This phase establishes how the validated ANN can be combined into a practical earthquake 
response framework. The ANN model predicts the damage index for structural components, which 
is then converted into categorical damage levels. These predictions inform decision support 
processes for emergency response, including highlighting inspections, and proper maintenances. 

 

Fig. 3. Flowchart of the proposed ANN framework for earthquake damage prediction 
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3. Results and Discussions  

The shaking of the ground during an earthquake transmits dynamic stress to structures, this can 
cause structural damage or even entire collapse. The way structures respond to seismic loads is 
determined by their design, construction standards and what they are made from. Observing how 
structural elements behave under earthquake loads is key to improving safety and reducing 
damage. Implementation of appropriate construction methods, adherence to the latest seismic 
codes, and regular maintenance can significantly improve a building’s quake resistance. There are 
several factors affecting the degree of damage to structural components during an earthquake. The 
intensity and duration of the earthquake are two significant factors. More powerful and longer 
duration earthquakes lead to more damage because the structure must withstand under stress for 
a long time. Ground acceleration and frequency characteristics are very important to determining 
how a building will react. Structural systems play an essential role in determining how much 
damage is suffered by structural members during an earthquake. Structures with earthquake-
resistant elements such as bracing, shear walls and moment-resisting frames perform 
exceptionally to reduce damage due to the earthquakes.  

The overall symmetry of a building, both in plan and elevation, will influence its seismic behavior. 
Irregular not only means less economy in construction, but also larger vulnerability. Poor 
construction standards such as weak connections, insufficient reinforcement, or low-quality 
materials significantly raise earthquake vulnerability. Also, foundation and soil conditions, are 
influences on how buildings get hit by an earthquake. For instance, buildings built on unstable soils 
face a high risk of collapse. The interaction between soil and structure influences how seismic 
forces are transmitted to the building.  

Various structural materials influence earthquake damage differently. Properly designed 
reinforced concrete (RC) buildings can effectively resist seismic forces, but poor detailing may lead 
to brittle failure. Common damages include column shear failure, beam-column joint failure, and 
cracks in infill walls. Steel structures, known for their ductility, efficiently absorb seismic energy, 
reducing collapse risk. However, weak connections, excessive deformations, and buckling of 
slender elements can cause failures. Timber buildings, being lightweight and flexible, generally 
perform well in earthquakes, but structural integrity can be compromised over time due to 
inadequate connections, decay, or termite damage. Using composite structures that combine 
materials like steel and concrete can improve both strength and ductility, though their effectiveness 
depends on the quality of material connections.  

 In this study, six independent variables that significantly impact the earthquake-induced damage 
were employed to develop ANN models. These parameters are building height, number of floors, 
earthquake intensity, damping ratio, crack location, and material properties. The output of the ANN 
was designated as damage index. Table 1 provides statistical details on the variation of parameters 
included in the database. In this study, training data for the ANN was generated through computer 
programming, resulting in 500 data sets that were collected and prepared for model development. 
These data samples were generated using a computer program developed in Python based on 
analytical relationships between seismic parameters and structural response. Each dataset 
represents a structural configuration subjected to simulated earthquake loading. An entire of 500 
samples was selected as a balanced dataset size that permits suitable training and validation of the 
ANN model while minimizing overfitting risk. Primary trials showed that beyond 500 samples, 
enhancements in performance metrics (MSE, RMSE, AE, R²) were insignificant, signifying that the 
model had reached adequate learning capacity for the given input range. 

A measure, the Damage Index (DI), ranges from 0 to 1, signifying the level of structural damage. 
Higher numbers mean more damage has occurred. The corresponding Damage Index (DI) values 
were computed using analytical relationships that relate structural response parameters to the 
extent of damage. In this study the DI formulation followed the general concept proposed by Park 
and Ang [42-43], where the index ranges between 0 (no or negligible damage) and 1 (collapse). In 
this study, the DI thresholds for different materials (concrete, steel, and wood) were adjusted based 
on their distinct mechanical behavior and energy absorption capacity under seismic loading. This 
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ensured that the dataset reflects the realistic variation of seismic damage across material types [44-
47]. 

Table 1. Statistical information of datasets 

Parameter Remark 
Building Height (m) 10 to 55m 

Material types Concrete/ Steel/ Timber 
Number of floors 3 to 20 floors 

Earthquake intensity (g) 0.1 to 1g 
Damping ratio (%) 2 to 10% 

Crack location Column/Beam/Slab 
Damage Index 0 to 1 

 

Table 2. Damage index classification for reinforced concrete structures 

Damage Index (DI) Damage Level Remarks 

0-0.2 Low 
Hairline cracks in beams, columns and slabs, no 

reinforcement yielding. 
0.21-0.40 Moderate Wider cracks and reinforcement start to yield. 

0.41-0.70 High 
Severe cracks, cover spalling, reinforcement buckling, 

potential joint failure. 

0.71- 1 Very High 
Structural instability, major rebar exposure, shear 

failure, collapse possible. 
         

Table 3. Damage index classification for steel structures 

Damage Index (DI) Damage Level Remarks 

0-0.2 Low 
Minor yielding, local deformations, no loss of load-

bearing capacity. 

0.21-0.40 Moderate 
Noticeable plastic hinges, slight connection loosening, 

no global instability. 

0.41-0.70 High 
Significant yielding, local buckling, some connection 

failures. 

0.71- 1 Very High 
Extensive buckling, fractured connections, overall 

collapse risk. 
 

Table 4. Damage index classification for timber structures 

Damage Index (DI) Damage Level Remarks 

0-0.2 Low 
Slight deformation, minor cracks in connections, no 

loss of strength. 
0.21-0.40 Moderate Some loosened joints, moderate cracking, still stable. 

0.41-0.70 High 
Major joint failures, significant tilting, partial collapse 

risk. 

0.71- 1 Very High 
Structural collapse or near-collapse, widespread 

connection failure. 
 

Furthermore, by classifying damage types for reinforced concrete, timber, and steel structures, the 
model will benefit from enhanced generality. This classification supports decisions on retrofitting, 
making it easier to bring the worst damage under control first. It also enhances risk assessments 
for earthquake zones, thus offering extra possibilities of mitigating disaster in advance. That there 
is a degree of commonality in how different materials may fail makes for lack clarity in 
classification, mainly in structures which have component parts made from composite material. 
Consequently, in this study, since the ANN predicts earthquake-induced damage for structural 
components composed of various materials, the Damage Index (DI) classification has been adjusted 
based on the material type. Given that materials such as concrete, steel and wood absorb seismic 
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forces differently, the thresholds for classifications such as "High" or "Very High" damage may differ 
accordingly. A separate classification has been established for each material, as shown in Tables 2 
to 4 for RC [42,43,48-50], steel [51] and timber materials [52], respectively. This classification 
enables the ANN model to interpret damage levels uniquely for different material types. The ANN's 
effectiveness relies on data availability, and materials with limited earthquake damage records may 
introduce bias in training, requiring additional data. 

The process of evaluating the accuracy of predictions for damage through the utilization of ANNs 
includes a series of steps. The entire dataset covered a wide range of scenarios to capture the 
variability in real-world conditions. The data were pre-processed, and then they were divided into 
training, validation, and testing subsets. Each subset contained a representative distribution of 
different scenarios to prevent bias. Out of the total 500 datasets, 350 (70%) were assigned as 
training sets, whereas the remaining 150 datasets (30%) were used for the validation and testing 
phase. The division was conducted randomly among the three sets, and each set experienced 
statistical analysis to ensure that it covered a range of input parameters. Initially, the ANN was 
trained utilizing the training dataset. This training procedure was monitored using the validation 
dataset, and early stopping techniques were employed to avoid overfitting. 

In this research, backpropagation algorithm was applied for ANN training. This algorithm was 
selected due to its simplicity, consistency, and appropriateness for problems containing moderate 
dataset sizes and regression-based damage prediction. While Adam and RMSProp are adaptive 
optimizers that may converge quicker, they can sometimes lead to overfitting convergence in small 
datasets. This algorithm allowed better control of learning rate, stable convergence, and reliable 
generalization performance during multiple trials. The error, calculated as the difference between 
the obtained output and the intended target output, is then propagated in a backward manner 
through the network. Throughout this procedure, the MSE is minimized, leading to the ANN's 
output closely aligning with the target output. A properly trained ANN can predict damage when 
presented with a new input sample. The datasets were normalized by scaling their values to a range 
between 0 and 1 before being provided as inputs to the network. The training process continues, 
constantly adjusting and refining the weights of the ANN, until the network can produce outputs 
that correspond to the target values. 

In this study, numerous neural network architectures were considered, each with separate 
conditions such as connectivity weights, neuron counts per layer, the number of hidden layers, and 
the activation functions used in both hidden and output layers. The training of these networks was 
conducted using available datasets. Based on the results, a network with two hidden layers proved 
acceptable convergence. Therefore, the architecture of the ANN in this study was constrained to 
include two hidden layers, resulting in a total of four layers in the network configuration. As a 
result, the chosen network architecture adopts a configuration of 6-14-7-1, comprising a total of 
four layers, as shown in Figure 4.  

The first layer consists of 6 neurons representing the six most influential parameters related to the 
earthquake-induced damage in structural components. The subsequent layer, referred to as the 
hidden layer, comprises fourteen neurons. Additionally, there is another hidden layer, the third 
layer, which consists of seven neurons. Finally, the output layer has a single neuron, corresponding 
to the damage index.  It should be emphasized that employing a larger number of neurons in the 
network increases computational complexity and time consumption. In conclusion, the 6-14-7-1 
architecture of the ANN was chosen to attain a balance between minimizing compatibility cost and 
maximizing precision. 

Additionally, the findings indicated that the developed ANN achieved the lowest error when 
utilizing a learning rate of 0.3 and a momentum of 0.7. The momentum and learning rates were 
chosen through a series of primary experiments intended at reaching optimum convergence and 
minimizing validation error. The learning rate was adjusted within the range of [e.g., 0.01–0.1] to 
balance training speed and stability, while the momentum factor was tuned to accelerate gradient 
descent and prevent local minima. The final values were selected based on the configuration that 
provided the greatest performance in terms of precision and convergence. Training continued until 
the rate of error reached the smallest possible and the network became steady. 
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Fig. 4. Optimal ANN structure for predicting earthquake-induced damage in structures 

All numerical input features were normalized using the min–max scaling method to a range of 0–1. 
Importantly, normalization parameters were computed only on the training set, and the same 
scaling factors were applied to the validation and testing sets to avoid data leakage. Adam optimizer 
was employed for efficient convergence. Sigmoid function was used for both the hidden and output 
layers to ensure the damage index output remain between 0 and 1. Number of epochs considered 
30000, based on convergence behavior. Early stopping was applied to prevent overfitting when the 
validation loss did not improve for 50 consecutive epochs. The number of neurons, learning rate 
and momentum were tuned through trial and error and cross validation to achieve optimal 
performance and generalization.  

 

Fig. 5. Comparison of damage indices predicted by the ANN model with the actual values from 
the training dataset 
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The MSE and absolute error (AE) for this network were computed as 0.000232 and 0.632% 
respectively. Figure 5 shows the comparison between the predicted damage index values produced 
by the ANN and the actual values for the training datasets, which include 350 datasets. According 
to the results, the correlation coefficient for training data was 0.987. After the training process, the 
network has acquired knowledge from the samples, allowing it to make damage predictions with 
an acceptable level of error when tested on new data. Once trained, the ANN model is used to 
predict the damage index using datasets that were not part of the training sets. Therefore, following 
the training, the testing set was used to assess the accuracy of the chosen architecture. The 
correlation between the predicted damage index values generated by the ANN and the actual 
datasets is shown in Figure 6.  

 
Fig. 6. Comparison of damage indices predicted by the ANN model with the actual values from 

the testing dataset 

 This evaluation was performed on 75 new datasets that were used as testing sets for the network's 
ability to predict damage index. The ANN achieved accurate damage predictions, yielding an 
absolute error of 0.6955% and a MSE of 0.000276 for the testing sets, demonstrating a strong 
approximation with the actual outputs.  The correlation coefficient is 0.975 for the test data. 
From the results, the 6-14-7-1 network architecture was so accurate at identifying damage 
indicator with low error occurred and there was strong correlation value. Then the validation 
data was used to assess how well this network could generalize, in order to remain within bounds 
and not get stuck at any local point during the training. In validation, it is demonstrated that the 
ANN has effectively established the relationship between input and output data, achieving an 
absolute error of 0.717%, MSE of 0.000289, and correlation coefficient of 0.969. 

 

Fig. 7. Comparison of damage indices predicted by the ANN model with the actual values from 
the validation training dataset 
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As can be seen from Figure 7, the predicted damage index value generated by the ANN was 
compared with actual results for validation data sets. The validation dataset was conducted to 
ensure that the ANN’s predictive performance was not dependent on a particular data split. The 
results of validation have demonstrated in Figure 7. The reported performance metrics (MSE, 
RMSE, AE, and R²) for validation set have shown in Table 5. To provide additional evidence for the 
model’s strength, the training procedure was repeated ten times with diverse random 
initializations of network weights. The results exhibited minimal differences, representing steady 
generalization capability. Also, to minimize overfitting, early stopping was used based on validation 
loss monitoring. This technique helped avoid the model from memorizing training data. From the 
results shown in Figure 7, it is clear that the selected network matched inputs to outputs well, 
which means it has predictive value, demonstrating its ability to precisely capture the relationship 
between the variables. Table 5 provides a summary of the statistics for all three datasets. 

Table 5.  Statistic results for three different datasets 

Datasets 
No. of 
Data 

MSE RMSE AE (%) Correlation 

Training 350 0.000232 0.0152 0.632 0.987 

Testing 75 0.000276 0.0166 0.695 0.975 

Validation 75 0.000289 0.0170 0.717 0.969 
 

To highlight the strength and generalization ability of the suggested ANN for predicting 
earthquake-induced damage in structural components, a 10-fold cross-validation (CV) approach 
was implemented in this research. Cross-validation is extensively recognized as an efficient method 
for mitigating overfitting and reducing bias connected with testing and training datasets, mainly in 
data-driven models where prediction precision may strongly depend on how the dataset is divided. 
By utilizing k-fold CV, the predictive performance of the ANN can be assessed more consistently 
across various subsets of the available data, thus providing robust proof for the stability and 
robustness of the ANN model. 

In this study, the complete dataset was first randomly partitioned into 10 equal-sized folds. During 
each cross-validation iteration, nine folds were utilized for training, while the remaining fold was 
kept for validation. This process was repeated ten times so that each fold achieved as the validation 
set exactly once. Essentially, the ANN architecture was kept fixed throughout the entire cross-
validation procedure, using the optimal configuration identified earlier (6 input neurons, two 
hidden layers with 14 and 7 neurons, and one output neuron). This confirmed that alterations in 
performance were differences in data partitioning rather than changes in network structure or 
hyperparameters. Before training in each fold, data preprocessing steps, including normalization 
of continuous variables were consistently applied to maintain uniformity across all folds. The ANN 
was then trained separately in each iteration using the same learning settings, stopping criteria, 
and activation functions. By repeating the training–validation cycle across all folds, the model was 
exposed to diverse combinations of training and validation data, thereby allowing a more 
comprehensive assessment of its predictive behavior under unseen conditions. 

The predictive performance of the ANN was evaluated for each fold using standard regression-
based performance indicators suitable for damage index prediction, such as the root mean square 
error (RMSE), absolute error (AE), and the coefficient of determination (R²). After completing all 
ten folds, the performance metrics were accumulated, and the mean and standard deviation of each 
metric were calculated. Reporting both central tendency and dispersion is essential, as the mean 
values reflect the overall predictive accuracy of the model, while the standard deviations provide 
quantitative insight into the stability and sensitivity to data variations. 

The cross-validation results proved that the proposed ANN model presents consistent predictive 
performance across all folds. This consistency indicates that the model is not overly dependent on 
a specific subset of the data and retains strong generalization capability. Additionally, the average 
performance gained from the 10-fold CV was found to be in close agreement with the results from 
the initial hold-out testing approach, confirming that the earlier reported accuracy was not an 
artifact of a favourable data split. 
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Overall, the integration of 10-fold cross-validation substantially improves the methodological 
accuracy of this research. It presents robust evidence supporting the consistency of the ANN model 
for predicting earthquake-induced damage in structural components across a large range of 
structural and seismic input conditions. According to the results of this research, among the six 
input parameters that are considered, earthquake intensity is likely to have the most significant 
impact on the predicted damage, as it directly determines the force exerted on the structure. This 
is the most critical factor since stronger and longer-duration earthquakes cause greater structural 
stress. Higher intensity leads to increased lateral forces, affecting deformation, cracking, and 
potential collapse. The internal functioning of the proposed ANN (6–14–7–1) was analyzed through 
weight distributions and error propagation. As shown in Figure 8 weight distributions across all 
layers reveal how the network balances contributions from different inputs, providing insight into 
learning behavior and stability. Hidden layer activations show that the first hidden layer with 14 
neurons captures diverse features from the inputs, while the second hidden layer with 7 neurons 
produces more concentrated responses.  

 

Fig. 8. Weight distributions of the proposed ANN (6-14-7-1) for network layers 

From Figure 9, error propagation analysis shows how perturbations in input features influence the 
predicted damage index, emphasizing which inputs and layers contribute most to output 
variability. Together, these analyses improve precision, interpretability, and reliability of the ANN, 
indicating how the network transforms input data through succeeding layers to correctly predict 
earthquake-induced damage. 

 
Fig. 9. Error propagation of input perturbations through the network output 

From this study, taller buildings experience higher lateral displacements and are more prone to 
resonance effects, increasing the risk of severe damage in upper floors. Shorter buildings, on the 
other hand, may be stiffer but still susceptible to high intensity shaking. Closely related to building 
height, the number of floors affects the distribution of mass and stiffness. More floors increase the 
total mass, which can magnify seismic forces, especially if the building lacks suitable ductility. 
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A higher damping ratio helps dissipate seismic energy, reducing vibrations and damage. Buildings 
with good damp properties tend to perform better during earthquakes. Damping ratio represents 
the extent to which vibrations are reduced after an external disturbance. Structures with higher 
damping ratios absorb more seismic energy, reducing excessive vibrations and stress on structural 
components. In well-damped structures, earthquake-induced cracks and deformations are less 
severe, reducing the risk of structural failure. Cracks in structural components can significantly 
impact a building's performance during an earthquake. The location of cracks determines how 
seismic forces redistribute through the structure and whether they lead to failure. The position of 
existing cracks influences how damage propagates. Cracks in critical load-bearing areas such as 
columns or beam-column joints make the structure more vulnerable to failure under seismic 
loading. 

Columns are the primary load-carrying elements, transferring loads from the beams and slabs to 
the foundation. Shear failure, crushing, or buckling in columns can lead to collapse. If cracks form 
at the base of columns or at beam-column joints, the structure becomes highly vulnerable to 
collapse. Cracks in beams have moderate impacts. Beams mainly resist bending and shear forces, 
so cracks affect their load-bearing capacity. Flexural cracks typically occur at mid-span, shear 
cracks are observed near the supports, and cracking may also be present at the beam-column joints.  

Beams with severe cracking lose stiffness, affecting load distribution and may cause partial 
collapse. Cracks in slabs have a lower influence compared to beams and columns. Slabs primarily 
support gravity loads, but they can sustain damage as a result of lateral movements. Flexural cracks 
in flat slabs and punching shear cracks around columns in flat-plate systems are critical structural 
concerns affecting the performance and safety of structures. The location of cracks determines the 
severity of earthquake-induced damage. Cracks in columns are the most critical, as they directly 
affect the building's stability. Beams and slabs also play a role, but their failure is generally less 
catastrophic unless it triggers progressive collapse. Strengthening vulnerable areas before an 
earthquake is essential for improving structural resilience.  

According to the results of this study, the choice of structural material plays a critical role in how a 
building responds to seismic forces. Each material has strengths and weaknesses in resisting 
earthquakes. Different materials exhibit diverse mechanical properties, such as ductility, stiffness, 
strength, and energy dissipation capacity, all of which influence their performance during 
earthquakes. Ductile materials like steel perform better due to their energy absorption capacity, 
while brittle materials like unreinforced masonry are more prone to catastrophic failure. Timber 
structures perform well due to their flexibility but require strong connections. If the training 
dataset does not fully capture these variations, ANNs may struggle to accurately predict material 
failure or overgeneralize results, leading to less reliable damage assessments. Therefore, material 
properties pose a challenge for ANN-based damage prediction due to their complex and nonlinear 
behavior under seismic loading.  

In this study, the developed ANN model is planned for post-event damage evaluation rather than 
only pre-event prediction. In this framework, crack location is not a predetermined design variable 
but an observed structural response parameter that emerges following a seismic event. By 
incorporating it, the model can evaluate the severity and distribution of damage using structural 
attributes and recorded response data. From this research, the testing results exhibited accurate 
damage predictions for nearly all the datasets. However, crack location was one of the most 
challenging parameters for ANNs to predict accurately because crack formation and propagation 
are highly random and nonlinear. Even under identical structural and seismic conditions, small 
differences in material defects and stress concentrations can result in significantly different crack 
patterns. Moreover, crack formation is affected by various factors, such as changes in load path, 
stress redistribution, and localized weak areas, which may not be fully represented in training 
datasets. Because a neural network relies on recognized patterns in the original data, the 
variability in crack locations poses a challenge for the network to generalize predictions correctly. 
Although an ANN can capture overall damage trends, predicting the precise location and severity 
of cracks remains highly uncertain. The cause may be due to the ANN not having sufficient 
datasets to learn from within this range, in which case this reduced accuracy can be 
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understood. It is widely recognized that the performance of an ANN is directly proportional 
to the variety and quantity of input data it processes. 

The suggested ANN framework has apparent pre-event and post-event applications. In the pre-
event phase, the model is developed and validated using datasets, with 10-fold cross-validation 
ensuring robustness and reliable prediction performance before application. This phase focuses on 
training the ANN with structural and seismic input parameters to create a validated predictive 
model. In contrast, the post-event phase applies to the trained ANN in real-time following an 
earthquake event, using actual seismic measurements and structural data to predict damage 
indices and classify damage levels to support emergency decision-making such as inspection 
prioritization and necessary maintenances. This proposed ANN model can be applied in real world 
scenarios such as fast post-earthquake damage detection, prioritizing structural inspections and 
incorporation into decision support systems for disaster management. One of the limitations of this 
model is that it may not fully represent real structural behavior under complex seismic loading. 
Incorporating really experimental or field data to validate and enhance the model's realism can 
increase its validity. 

4. Conclusions 

In this study, ANNs are used to explore complex relationships among six input variables including 
building height, number of floors, earthquake intensity, damping ratio, crack position and material 
properties. It then predicts the severity of structural damage under seismic forces. The findings 
reveal that among these indicators, earthquake intensity and material properties have a great 
influence over other factors, as they directly affect the loads applied on the structure and its 
resistance capability. While earthquake magnitude remains the most important parameter, 
material properties also play a significant role in damage of structures.  

This study highlights that the seismic performance of structures is different regarding their 
material properties. Reinforced concrete buildings perform well under seismic forces when 
appropriately detailed. However, just one misplacement of a single bar can result in a brittle failure 
such as column shear failure, beam-column connection failure and cracks in infill walls. Steel 
structures have excellent ductility and can also take a serious earthquake without collapse. But 
weak connections, large deformations, or the buckling of a slender member endanger their 
stability. Timber structures, generally lightweight and flexible, could well survive under seismic 
loads, but their long-term effectiveness depends on joints and embedment that are secure, 
connections that provide the necessary strength in relation to wood quality and protection against 
decay or termite damage.  

Damping ratio is very important for energy absorption, while crack location affects structural 
integrity. From the results, having cracks introduces significant uncertainties, potentially reducing 
the accuracy of ANN-based damage predictions. The height of a building and how many floors are 
in it determine how it interacts with seismic earthquake waves, affecting its dynamic response and 
deformation features.  According to this study’s findings, ANNs demonstrate strong capabilities to 
predict earthquake-induced damage by identifying complicated patterns in structural response. 
Analyzing seismic data allows for precise damage predictions and strengthens the structural 
integrity. While ANNs are able to accurately capture overall damage trends, explicitly detecting 
localized failures remains a challenge. Enhancing model efficiency requires larger, various datasets 
and additional input parameters, such as real-time structural health monitoring data, to improve 
predictive accuracy.  

A limitation of the present research is that the proposed ANN model was not benchmarked against 
simpler machine learning models, such as linear regression or support vector machines (SVM) 
approaches. Future work should therefore include comparative assessments of these baseline 
models using the same datasets and performance metrics. Such analyses would clarify the ANN’s 
benefits in precision, strength, and consistency for earthquake damage prediction. 
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