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In Pre-Engineered Building (PEB) production, forecasting production timelines
accurately is crucial, especially as tasks like cutting, welding, and painting vary
depending on structural complexity and job size. Many conventional scheduling
methods fall short when dealing with the dynamic, multi-stage nature of
fabrication workflows. This study introduces a profitability-aware machine
learning-based approach that predicts both overall and stage level fabrication
durations using Random Forest regression. The model is trained on part-level
production data, with features including project tonnage, number of parts, and
statistical descriptors of task durations. To improve learning performance,
projects are grouped into six distinct complexity classes based on fabrication
characteristics. A profitability-oriented evaluation is also proposed, which labels
prediction outcomes as Profitable, Acceptable, or Excess depending on how closely
they align with business targets. The model is tested on real data from 34
completed PEB projects, showing clear improvements over conventional

estimation methods. Results demonstrate that stage-level predictions outperform
start-date-based forecasts, ensuring profitability-aligned outcomes even in high-
complexity projects. The proposed framework helps bridge the gap between
technical forecasting accuracy and real-world production goals, offering a practical
solution for smarter planning in steel fabrication environments.

© 2026 MIM Research Group. All rights reserved.

1. Introduction

The construction industry continues to adopt industrialized production systems such as Pre-
Engineered Buildings (PEBs) to meet rising demands for speed, efficiency, and cost control. Unlike
conventional structures, PEBs rely heavily on steel-based components fabricated off-site. These
components pass through sequential, tightly coupled stages including cutting, welding, drilling, and
surface treatment. While this modularization accelerates installation, it introduces new challenges.
Stage-wise fabrication durations are difficult to predict due to component variability, production
concurrency, and task interdependencies.

Accurate forecasting of fabrication timelines is vital to ensure just-in-time project delivery,
optimize shop-floor operations, and maintain profitability. Traditional estimation methods are
often based on historical averages or parametric rules. These methods lack the granularity and
adaptability failing to capture the dynamic fabrication environments. In response, researchers have
increasingly turned to machine learning to address this complexity [1]. For instance, A demand
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forecasting model for steel manufacturing was introduced using ML techniques [2]. Stage-wise
prediction in fabrication was shown to improve accuracy by isolating each task [3]. More recently,
an ML-driven approach for material quantity estimation in structural fabrication was proposed [4].
Both highlighted the potential of data-driven models to outperform rule-based systems under
uncertainty [3,4].

Beyond material and demand forecasting, several studies have explored ML applications in activity-
level duration prediction. Beyond material and demand forecasting, several studies have explored
ML applications in activity-level duration prediction. Ensemble-based methods such as Random
Forest have been applied to capture non-linear dependencies in production workflows [5,6,7].

Despite these advances, limitations remain. First, they treat fabrication as a monolithic process,
forecasting total durations without capturing variability across individual stages. Second, they
often fail to incorporate structural and project-level complexity factors which can significantly
impact process performance. Recent efforts to overcome these limitations include the use of
classification-aware preprocessing [8,9], feature engineering using statistical descriptors [10], and
profitability-aligned evaluation frameworks [11,12]. These approaches shape the methodology of
the present study.

This research proposes a machine learning based predictive framework that forecasts both overall
and stage-specific fabrication durations in PEB. Using Random Forest regression and statistical
features such as mean, median, and mode from part-level fabrication records, the model is trained
on data from 34 real-world projects. Projects are stratified into six mutually exclusive classes
(P1C1-P2C3) based on their structural complexity and production scale, improving model
specificity and interpretability. Forecast outputs are further evaluated using a profitability-aware
classification system that categorizes predictions into “Profitable,” “Acceptable,” or “Excess” based
on deviation thresholds tied to business performance. The key contributions of this study are as
follows:

e Profitability-aware forecasting framework: We propose a machine learning framework
tailored to Pre-Engineered Building (PEB) fabrication, which integrates profitability
considerations into predictive modeling — an aspect rarely addressed in prior work.

e Activity-level prediction strategy: Unlike conventional project-level or start-date-based
forecasting, this study introduces and validates an activity-specific modeling approach that
reduces error propagation and enhances stability across fabrication stages.

o Empirical validation across complexity tiers: Using a dataset of 34 projects stratified into low,
medium, and high complexity classes, the framework is empirically tested, demonstrating
robust accuracy (low RMSE, narrow confidence intervals) and superior profitability
classification compared to baseline models.

e Decision-making support in industrial environments: The framework provides actionable
insights for PEB managers by linking predictive accuracy to profitability outcomes, enabling
informed scheduling, resource allocation, and financial planning.

Together, these contributions advance both the academic understanding of machine learning in
construction manufacturing and the practical capabilities of PEB firms to achieve profitability-
aware project control.

2. Literature Review
2.1. Machine Learning Applications in Construction and Fabrication Forecasting

Machine learning (ML) has emerged as a transformative approach in construction and industrial
fabrication, offering data-driven alternatives to conventional scheduling and forecasting
techniques [13]. Early studies in this domain developed ML-based productivity models for
construction crews, demonstrating adaptability under site variability [14]. Computational
intelligence was also applied to inventory management, where improvements in material flow
were achieved within construction supply chains [15].

In steel and modular fabrication, demand forecasting has become a crucial use case for ML. A
tailored model was designed to forecast demand in steel production environments [2]. Regression-
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based learning was later applied to estimate material quantities in structural fabrication tasks [4].
Neural network approaches were also validated for raw material inventory control in steel plants,
confirming their usefulness for shop-floor planning [16].

Recent studies in materials and construction domains further underscore the versatility of machine
learning in predictive tasks. Advanced neural architectures and optimization techniques have been
successfully employed beyond scheduling and fabrication. For instance, an SRS-optimized long
short-term memory (LSTME) model achieved high accuracy in predicting the mechanical
properties of friction stir processed Al-6061-Alumina composites, with R* values exceeding 0.90
across multiple material performance indicators [13]. Similarly, an artificial neural network (ANN)-
based soft-computing model was developed to forecast the compressive strength of eco-friendly
recycled aggregate concrete, demonstrating strong agreement between experimental and
predicted outcomes [1]. These contributions highlight the broader applicability of ML in handling
complex, nonlinear behaviors across engineering domains, thereby reinforcing the rationale for its
adoption in forecasting multi-stage fabrication durations in PEB projects.

2.2. Activity-Level Forecasting and Multi-Stage Modeling

Traditional duration prediction models often struggle to adapt to the variability present in complex
fabrication workflows. To address this, recent studies have proposed breaking projects into
discrete stages or tasks. A predictive model was developed that independently forecasted
fabrication flow by stage, improving overall forecast fidelity [3]. ML techniques were also applied
to estimate production costs at the activity level, showing that disaggregation helps isolate
uncertainty [17].

Data-driven timeline forecasting in modular housing was explored through ML applications that
estimated process-specific durations across prefabricated units [18]. Multi-objective ML models
for scheduling optimization were also introduced, reinforcing the effectiveness of activity-aware
modeling [19]. A comprehensive review of hybrid predictive scheduling models in industrial
construction further emphasized the value of integrating multiple algorithms across project stages
[20]. Ensemble-based models for activity-level forecasting have shown superior accuracy in
dynamic workflows. Support vector machines were applied for scheduling in engineering-
procurement-construction (EPC) projects [21].

2.3 Feature Engineering and Model Architecture in Predictive Scheduling

Feature engineering plays a pivotal role in the success of ML-based forecasting models.
Classification-aware preprocessing was incorporated to improve generalization in scheduling
models [8]. Hybrid models that combined statistical features such as mean, median, and mode with
learning algorithms were shown to enhance prediction accuracy [22]. The integration of [oT-based
sensor data for real-time forecasting in fabrication environments was also explored, marking a shift
toward dynamic model updating [23].

The comparison of ML architectures has been a subject of interest in the construction domain.
Decision trees, support vector machines, and Random Forest models were evaluated for
forecasting applications. Random Forest, among ensemble models, has proven effective in activity-
level forecasting by capturing non-linear interactions and handling heterogeneous features,
making it suitable for fabrication duration prediction [24,6,7]. Statistical descriptor-based feature
sets, similar to those employed in the present study, were also tested and found to improve
duration prediction accuracy [10].

2.4 Complexity-Aware Stratification and Classification-Driven Modeling

Given the heterogeneity in project types and part geometries in fabrication workflows,
classification-aware approaches have gained traction. Component-type clustering was applied to
isolate variance in project complexity, which improved learning performance [9]. A task-
classification model was implemented that adjusted its prediction pipeline based on structural and
geometric load [22]. These strategies directly inform the use of class-based segmentation in your
work (e.g.,, P1C1 to P2C3).
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Profitability-aware forecasting framework further advanced this concept by classifying predictions
into zones based on expected value-added versus deviation risk [11]. This aligns with your study’s
implementation of three forecast-based profitability classes Profitable, Acceptable, and Excess
which convert RMSE accuracy into financial insight.

2.5 Profitability-Driven Forecasting

Several studies have emphasized that forecasting precision must translate into operational or
financial gains. Forecast deviation was linked to profitability erosion, with recommendations that
error tolerance thresholds be embedded into scheduling systems [25]. Cost-sensitive ML models
were developed to penalize over- or underestimation differently, introducing a concept later
integrated into classification-based evaluation frameworks [12]. Random Forest models were also
tested in high-variability scheduling environments, demonstrating that profitability-aware
learning produced more practical predictions [26].

2.6 Practical ML Integration

Industrial implementation studies demonstrated the practical integration of ML in fabrication
environments. Real-time dashboards were developed for monitoring fabrication progress [27]. ML
was also embedded into production feedback loops to support adaptive decision-making [28]. Cost
and lead-time improvements in a PEB production facility were further documented after the
adoption of stage-level ML predictions, affirming the direct applicability of such methods in real-
world steel fabrication environments [29].

3. Data Acquisition and Preparation
3.1 Data Source and Collection

The foundation of this study was based on real-time fabrication data collected from a Pre-
Engineered Building (PEB) production facility. The structured data pipeline was designed to
preserve the fidelity of production workflows while ensuring compatibility with machine learning
(ML) algorithms. The primary data source was a centralized Google Sheets interface referred to as
the PRED Sheet (Production Raw Entry Database). This live document was managed by the factory
manager and is continuously updated to reflect real-time progress. It contains both static and
dynamic fields. Static entries, such as job code (JC), member part mark, quantity (Q), and weight in
Kgs (TW), are recorded once upon project initiation. Dynamic entries, including date-wise progress
for each activity stage, are updated daily for every part mark involved in the manufacturing process.

Table 1. PRED Sheet - Production Raw Entry Database
JC Part Q TW C S BS Sw L. FP

18 Rafter/Portal 1 255.41 17/2/22 17/2/22 20/2/22 22/2/22 ... 10/5/22
18 Rafter/Portal 1 219.37 17/2/22 17/2/22 20/2/22 21/2/22 ... 10/5/22
18 Rafter/Portal 1 309.63 20/2/22 20/2/22 21/2/22 22/2/22 ... 10/5/22
18 Rafter/Portal 1 309.63 20/2/22 20/2/22 21/2/22 23/2/22 ... 10/5/22
19 Plates 1 0.3 24/1/22 NA NA NA ... 27/1/22
19 Plates 1 0.3 24/1/22 NA NA NA ... 27/1/22
19 Plates 1 0.3 24/1/22 NA NA NA ... 27/1/22
19 Plates 1

0.3 24/1/22 NA NA NA ... 27/1/22
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Each fabricated component undergoes ten sequential production stages: Cutting (C), Splicing (S),
Built-up Section (BS), SAW Welding (SW), Fit-up (FW), Welding (W), Drilling (D), Cleaning &
Grinding (CG), Primer Application (P), and Finish Painting (FP), followed by Dispatch. Table 1
presents a sample excerpt from the PRED Sheet.

3.2 Feature Engineering

To support the modeling pipeline, the PRED Sheet was supplemented with calculated fields using
spreadsheet automation. These derived metrics fall into two categories: (i) Start Date-based
durations, which record the number of working days taken to complete each task from the official
project start date (SD), and (ii) individual activity durations (AD), which isolate the duration of each
production stage from its own start to end date. Table 2 shows a representative sample of these
calculated fields.

Table 2. Automated activity duration metrics from PRED sheet

C P C S BS SwW FU w FP
J art Sb AD SD AD SD AD SD AD SD AD SD AD ... SD AD
18 Rafter/Portal 1 1 1 1 4 4 6 3 9 4 10 2 ... 83 5
18 Rafter/Portal 1 1 1 1 4 4 6 3 10 5 10 1 ... 83 5
18 Rafter/Portal 1 1 1 1 4 4 5 2 14 10 16 3 ... 83 5
18 Rafter/Portal 1 1 1 1 4 4 5 2 14 10 16 3 ... 83 5
18 Rafter/Portal 1 1 1 1 2 2 3 2 7 5 13 7 ... 80 5
19 Plates 1 1 NA NA NA NA NA NA NA NA NA NA ... 4 1
19 Plates 1 1 NA NA NA NA NA NA NA NA NA NA ... 4 1
19 Plates 1 1 NA NA NA NA NA NA NA NA NA NA ... 4 1
19 Plates 1 1 NA NA NA NA NA NA NA NA NA NA ... 4 1
19 Plates 1 1 NA NA NA NA NA NA NA NA NA NA ... 4 1

These engineered features, along with the raw material attributes, were preprocessed for machine
learning input. Missing values in activity durations occurred primarily when certain fabrication
stages were not applicable (e.g., splicing absent for plate-type members). Categorical variables such
as part marks were encoded using label encoding, and missing values were imputed using the
median duration for each respective activity within the same project.

3.3 Project Complexity Stratification

Statistical summaries were generated automatically from the PRED Sheet to reveal trends in
fabrication timelines. These summaries were pivotal for understanding the variability and central
tendency of production activities across projects. Specifically, for each project and each fabrication
activity, descriptive statistics including minimum, maximum, mean, median, and mode were
calculated. This statistical analysis enabled the identification of outliers, bottlenecks, and typical
process durations—insights that are critical for enhancing model accuracy and interpretability.

Two key types of aggregations were performed: the first computed statistics relative to the Start
Date (SD) to assess cumulative project timelines, and the second isolated durations for individual
activities, independent of their relationship to project commencement. The former allows
understanding of the overall project flow, while the latter isolates efficiency metrics for each task.

Tables 3 and 4 provide these aggregated statistics. Table 3 summarizes the project-level fabrication
durations from SD, offering insight into end-to-end timeline distributions. Table 4 breaks down the
statistical behavior of each fabrication activity across projects, illuminating activity-specific
variabilities.
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Table 3. Project-Wise Summary of Fabrication Durations (From Start Date)

Total Cutting Splicing
Code FabPr;zz';lon Min Max Mean Median Mode Min Max Mean Median Mode
19 50 1 1 1 1 1 0 0 0 0 0
21 18 1 1 1 1 1 2 2 2 2 2
22 399 1 1 1 1 1 1 2 1 1 1
24 550 1 1 1 1 1 1 2 1 1 1
27 24 1 1 1 1 1 1 1 1 1 1
29 288 1 1 1 1 1 1 2 1 1 1
30 339 1 1 1 1 1 1 1 1 1 1
31 901 1 1 1 1 1 1 2 1 1 1
Table 4. Project-Wise Activity Duration Summary (Independent of SD)
Code Total Fabrication Cutting Splicing
Parts Min Max Mean Median Mode Min Max Mean Median Mode
19 50 1 1 1 1 1 0 0 0 0 0
21 18 1 1 1 1 1 2 2 2 2 2
22 399 1 1 1 1 1 1 2 1 1 1
24 550 1 1 1 1 1 1 2 1 1 1
27 24 1 1 1 1 1 1 1 1 1 1
29 288 1 1 1 1 1 1 2 1 1 1
30 339 1 1 1 1 1 1 1 1 1 1
31 901 1 1 1 1 1 1 2 1 1 1

This level of statistical analysis formed the basis for selecting input features and tuning model
performance in subsequent stages. Moreover, it highlights how specific activities vary in duration,
guiding the identification of process stages with the greatest predictive uncertainty.

3.4 Classification Based Preprocessing of Data

To ensure that the machine learning model could learn from structurally homogeneous and
operationally consistent data, a robust classification scheme was implemented to stratify the
dataset based on fabrication characteristics. This multi-step preprocessing and grouping strategy
focused on both the type of structural elements fabricated and the scale of production, thereby
improving model specificity and interpretability.

The dataset initially included 71 PEB projects. Incomplete, subcontracted, or conventionally
fabricated projects were excluded, leaving 34 with verified fabrication records. A further filter was
applied based on the presence of critical load bearing components specifically columns and rafters
which are essential to PEB structure. Projects containing both components were designated as type
P1, while those containing either component were categorized as type P2. This binary classification
ensured the inclusion of structurally significant and fabrication-relevant projects.
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The filtered projects were then grouped according to fabrication quantity thresholds measured in
metric tons (MT). Projects were categorized into three scales: small (0-30 MT), medium (30-80
MT), and large (>80 MT). Only medium and large-scale projects were retained to mitigate skewness
and reduce noise from under-representative records, resulting in a final dataset of 10 P1 and 12 P2
projects.

To further delineate complexity, projects were classified into three component-based categories:
C1, C2, and C3. These categories represent increasing structural and fabrication complexity, with
C1 comprising primary members such as columns and rafters, C2 incorporating additional load-
distribution elements like joist and portal beams, and C3 encompassing specialized components
such as crane beams and jack beams. Each project was assessed based on the proportion of its total
fabricated components that belonged to each combination. Minimum thresholds were imposed to
ensure dominant representation: 75% for C1, 80% for C2, and 85% for C3. These values were
determined in consultation with domain experts from the fabrication facility to align with
operational practice, where a component group is considered representative only when the
majority of fabricated parts belong to it. Projects meeting these thresholds were respectively
categorized into P1C1-P2C1, P1C2-P2C2, and P1C3-P2C3 classification groups.

This dual-layered classification based on fabrication type and component complexity yielded six
mutually exclusive and structurally coherent project groups. Each group reflects a distinct
fabrication profile, allowing for stratified training and evaluation of the predictive model. Notably,
among the 29 active fabrication components observed across all projects, 15 were common to all
classification tiers, while 11 appeared in at least two groups, and three were exclusive to the C3
category. This distribution reinforces the validity of the classification framework and its alignment
with real-world fabrication heterogeneity.

After preprocessing and removal of incomplete records, the final modelling dataset comprised 34
completed PEB projects. These instances were distributed across the three complexity classes as
follows: P1C1-P2C1: [20] records, P1C2-P2C2: [25], P1C3-P2C3: [28]. This breakdown ensured
that each class contained a sufficient number of observations for training and evaluation, while
preserving the intended separation between project types and complexity tiers.

The final result of this preprocessing is a dataset that captures the diverse operational realities of
PEB fabrication while maintaining sufficient uniformity within each group to enable accurate and
interpretable machine learning predictions.

4. Methodology

This section outlined the predictive modeling approach adopted for forecasting fabrication
durations in PEB projects using real-time production data. The methodology incorporated
ensemble machine learning, complexity-based data segmentation, and a profitability-aware
evaluation framework.

Evaluation

- Statistical
metrics (RMSE,
MSE, MAE)

- Profitability
categorization

\ (Profitable /

Acceptable /
Excess)

Feature
Engineering
- Statistical
descriptors (mean,
median, mode)

Project
Classification

-P1/P2

Modeling
- Random Forest
Regression
- Dual prediction:
Start-Date Based
& Stage-Level

Data Acquisition
(PRED Sheet:
part-level

End

-Insights for
Production
Planning

Start

N

durations,
tonnage, parts
count)

(components)

-Cl/c2/c3
(complexity)

- Aggregated
activity durations

Fig. 1. Methodology flowchart

Fig. 1. Methodology flowchart showing the sequence from classification-based project grouping to
feature engineering, Random Forest regression modeling, and profitability-oriented evaluation.
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4.1 Model Selection

A Random Forest Regressor was selected for its proven effectiveness in capturing non-linear
dependencies and managing overfitting. Unlike linear models that assume additive effects, Random
Forests can capture the complex interactions that arise from fabrication sequences, variable
workloads, and project heterogeneity. Its robustness to outliers and capability to operate with
minimal preprocessing make it suitable for real-world industrial datasets. Implementation was
carried out using the Scikit-learn Python package.

Random Forest Regression was chosen not only based on evidence from the literature but also due
to its methodological suitability for the nature of fabrication data. The dataset was high-
dimensional, with a mixture of categorical and continuous engineered features. Random Forest can
handle such datasets effectively without extensive preprocessing, was not sensitive to feature
scaling, and captures non-linear dependencies that linear models cannot address. Furthermore, it
mitigates overfitting through ensemble averaging, making it robust for real-world production data.

The predictive performance observed in this study (Sections 4.6.1-4.6.5) further confirms that
Random Forest aligns with the requirements of multi-stage fabrication forecasting, producing low
error rates and profitability-consistent outputs across complexity tiers. These results validate
Random Forest as a methodologically appropriate and empirically effective choice for this problem
setting.

4.2 Feature Inputs

The input feature set was derived from the PRED Sheet and included a combination of static,
dynamic, and engineered features. Static fields such as job code, number of parts, member weights,
and total tonnage formed the base attributes. Dynamic activity durations and completion
percentages extracted from automated spreadsheet formulas enhanced the temporal granularity.
Features were grouped into three primary types:

e Project attributes: Total parts, tonnage, dominant member types (e.g., columns, rafters).

o Activity durations: Mean, median, mode for each of the ten production stages.

e Completion indicators: Real-time percentages derived from daily updates.
Categorical variables were label encoded. Due to the decision-tree architecture of the Random
Forest model, feature normalization or scaling was not required.

4.3 Training and Validation Strategy

To preserve stratified project characteristics, model training was performed separately for each
grouping category (P1C1-P2C1, P1C2-P2C2, P1C3-P2C3). Within each class, data was split into
80% training and 20% testing sets. A 5-fold cross-validation scheme was employed during
hyperparameter tuning. Hyperparameters tuned include:

o Number of trees (n_estimators)

e Maximum depth of trees (max_depth)

e Minimum samples required to split a node (min_samples_split)
Grid search optimization was used, with RMSE as the scoring metric to ensure penalty on large
deviations.

4.4 Prediction Targets
Two target variables were defined to satisfy both managerial and operational forecasting needs:

e QOverall Project Duration: Measured in working days from the project’s start date to final
dispatch.

o Activity-Level Durations: Time required for specific fabrication stages such as Cutting,
Welding, and Painting.

This dual target approach enabled both macro-level (project-wide) and micro-level (activity-
specific) predictive insight.
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4.5 Evaluation Metrics
The model was evaluated using traditional regression metrics:

e Root Mean Square Error (RMSE) - Highlights model sensitivity to large prediction errors.
e Mean Squared Error (MSE) - Reflects the average squared deviation across all samples.

Additionally, a custom classification scheme was developed to assess predictions based on practical
thresholds for profitability and schedule tolerance. Predictions were categorized as:

Profitable (< -5% deviation from actual)
Acceptable (+5% deviation)

Excess (> +5% overestimation)

Shortfall (> +5% underestimation)

After obtaining predicted and actual fabrication durations for a given part, the percentage deviation
is calculated using the formula: ("Predicted"-"Actual")/"Actual"x100. For instance, if the model
predicts 12 days and the actual duration is 10 days, the percentage deviation is (12-
10)/10x100=20%. According to the study’s classification criteria, predictions with a deviation
between 0% and +10% are considered Profitable; those exceeding +10% are classified as Excess;
and deviations between 0% and -10% indicate More Profitable scheduling. In this example, the
20% deviation places the prediction in the Excess category, signaling an overestimation of time
that could lead to inefficient resource allocation in project planning.

4.6 Model Performance Summary
4.6.1 Statistical Error Analysis

This subsection presents a detailed analysis of the model’s prediction performance using Root
Mean Square Error (RMSE) and Mean Squared Error (MSE), computed for total project durations
and activity-level forecasts across the three project complexity groups—P1C1-P2C1 (low
complexity), P1C2-P2C2 (medium complexity), and P1C3-P2C3 (high complexity).

4.6.1.1 RMSE-Based Evaluation by Classification

Low Complexity (P1C1-P2C1): The model demonstrated excellent predictive performance. The
RMSE for total duration from Start Date (TSD) was 2.12 days, and activity-level RMSEs for
deterministic stages like Cutting (SCA, PCA) and Splicing (SSA, PSA) were 0.00, indicating high
confidence and standardization. Mid-stream processes such as SAW Welding (SSWA: 2.27), Fit-up
(SFA: 2.27), and Welding (SWA: 0.87) had relatively low RMSE values. Finishing activities showed
higher variability: Painting average from SD (SPA: 7.69) and Finish Paint average from SD (SFPA:
7.67) highlighting their dependency on external variables. Median RMSEs were closely aligned,
reinforcing stable model performance, as shown in Fig. 2 (a) which depicts RMSE for Start-Date-
Based and Activity-Level Predictions in Low-Complexity Projects (P1C1-P2C1).

Medium Complexity (P1C2-P2C2): With increased fabrication diversity, RMSE values moderately
increased. The RMSE for TSD rose to 2.50 days. SAW Welding (SSWA: 3.06) and Drilling (SDA: 3.55)
became more variable. Painting (SPA: 8.93), Finish Paint (SFPA: 8.97), and Grinding average from
SD (SGA: 2.78) continued to exhibit significant dispersion. However, base activities remained stable
(Cutting and Splicing: 0.00). Median RMSEs again mirrored average values, confirming that errors
were not driven by extreme outliers, as detailed in Fig. 2 (b) which is RMSE for Start-Date-Based
and Activity-Level Predictions in Medium-Complexity Projects (P1C2-P2C2).

High Complexity (P1C3-P2C3): Although the TSD RMSE was comparable (2.40 days), increased
component variability led to sharper divergence in certain activities. SAW Welding average from
SD (SSWA: 2.62), Fit-up average form SD (SFA: 3.94), Welding average from SD (SWA: 4.35), and
Grinding (SGA: 6.27) saw higher RMSEs. Notably, Primer (SPA: 9.81) and Finish Paint (SFPA: 9.97)
recorded the highest variability across all activities. In contrast, Cutting and Splicing remained
predictable with 0.00 RMSE. The median RMSEs, such as SPMe and SFPMe, were significantly lower
(~1.00), demonstrating that while outliers increased the mean error, core predictions remained
centered, as shown in Fig. 2 (c) RMSE for Start-Date-Based and Activity-Level Predictions in High-
Complexity Projects (P1C3-P2C3).
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4.6.1.2 MSE-Based Evaluation by Classification

Low Complexity (P1C1-P2C1): The MSE for (TSD) was 4.52 days®. SAW Welding (SSWA: 5.17),
Grinding (SGA: 0.90), and Painting activities like SPA (5.91) and SFPA (5.88) showed notable
squared errors. Other stages remained within 2.5 days?, indicating the model's strong resistance to
large deviations in simpler projects, from Fig. 3 (a) which shows MSE for Start-Date-Based and
Activity-Level Predictions in Low-Complexity Projects (P1C1-P2C1).
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Medium Complexity (P1C2-P2C2): The MSE for TSD increased to 6.50 days?, with elevated squared
errors in SAW Welding (SSWA: 9.38), Grinding (SGA: 7.70), and Painting stages (SPA: 7.90, SFPA:
8.00). Fit-up and Welding also crossed the 4.0 mark, indicating increased forecast instability as task
complexity and variability grew, as presented in Fig. 3 (b) - MSE for Start-Date-Based and Activity-
Level Predictions in Medium-Complexity Projects (P1C2-P2C2).

High Complexity (P1C3-P2C3): The MSE for TSD dropped slightly to 5.00 days?, potentially due to
overcorrected predictions. Activity-level MSEs for Saw Welding mean average (SSWA: 6.89) and
Grinding average (SGA: 3.90) remained significant. Interestingly, Painting stages had lower MSE
values (SPA: 0.90, SFPA: 0.90) possibly due to conservative adjustments in response to previous
overestimations. The pattern supports that model variance was concentrated in a limited set of
outlier tasks, as depicted in Fig. 3 (c) which represents MSE for Start-Date-Based and Activity-Level
Predictions in High-Complexity Projects (P1C3-P2C3).

As shown in Figs. 2 (a), 2 (b) and 2 (c), the RMSE values for both start-date-based and activity-level
predictions differ across low, medium, and high-complexity projects, respectively. Similarly, MSE
results for start-date-based and activity-level predictions are shown in Fig. 3 (a) for low-
complexity, Fig. 3 (b) for medium-complexity, and Fig. 3 (c) for high-complexity projects. This
explains that the Random Forest model consistently delivered high predictive accuracy in low-
complexity projects, with moderate performance in medium and high-complexity settings. Errors
increased notably in stages susceptible to variability such as SAW Welding, Grinding, and Painting.
Median RMSE values were generally lower than their means, reflecting resilience to outliers. This
group-based insight confirms that while deterministic activities maintain high fidelity, finishing
operations remain sensitive to contextual fluctuations.

Overall, both RMSE and MSE metrics affirm the model’s robustness and applicability in operational
forecasting. Its performance supports deployment in industrial PEB scheduling environments with
potential future improvements through integration of real-time production signals and
environmental parameters.

4.6.2 Classification-Wise Prediction Performance

To assess the consistency and adaptability of the Random Forest model across different fabrication
project types, three set of pairs were analyzed: P1C1 vs P2C1, P1C2 vs P2C2, and P1C3 vs P2C3.
Each pair represented a balance of structural complexity and production scale. The goal was to
evaluate model robustness in predicting both total project duration (from Start Date to dispatch)
and individual activity-wise durations. The predictions were evaluated using a structured tabular
framework, the sample table template as shown in Figs. 4 (a-c). For each classification, four sub-
tables were generated:

e Original values (actual durations),
Predicted values from the Random Forest model,
o Absolute error (difference between actual and predicted),
e Cumulative interpretation: percentage-based summary and qualitative categorization.

The comparative analysis of original data, ML predictions, error heatmaps, and profitability
classification are presented in Fig. 4 (a) for low-complexity. The model demonstrated excellent
agreement with actual values. Most predictions remained within an absolute deviation of +5%, and
the cumulative summary showed that 95% of the outputs fell under profitable, more profitable, or
acceptable categories. Only one instance approached a shortfall boundary, suggesting conservative
tendencies, which are often favorable in production planning.

The comparative analysis of original data, ML predictions, error heatmaps, and profitability
classification are presented in Fig. 4 (b) for medium-complexity. The projects performance
remained consistent despite increased complexity. The average absolute error was 2.03%, and all
predictions stayed within tolerable thresholds. The model exhibited stability in forecasting mid-
range projects, balancing precision with production-safe margins. The comparative analysis of
original data, ML predictions, error heatmaps, and profitability classification are presented in Fig.
4 (c) for High-complexity.
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Fig. 4 (a). Comparison of Original Data, ML Predictions, Differences Heatmap and Profitability
Classification (Acceptable, Excess, Shortfall) for Low-Complexity Projects (P1C1 vs. P2C1)
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Fig. 4 (b). Comparison of Original Data, ML Predictions, Differences Heatmap and Profitability
Classification (Acceptable, Excess, Shortfall) for Medium-Complexity Projects (P1C2 vs. P2C2)
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Fig. 4 (c). Comparison of Original Data, ML Predictions, Differences Heatmap, and Profitability
Classification (Acceptable, Excess, Shortfall) for High-Complexity Projects (P1C3 vs. P2C3)

The projects involved higher variability in structure, sequencing, and task durations. Yet, the model
maintained reliable predictive behavior. The average cumulative deviation stood at 1.84%, and
most outputs remained within acceptable or better classifications.). Only one project approached a
mild shortfall, reinforcing the model’s generalization capability across fabrication complexities.
Overall, the structured comparison across these classification pairs validates the model's ability to
produce accurate and consistent predictions across diverse project types. This forms the baseline
for deeper trend analysis (Section 4.6.3) and classification-based profitability assessments (Section
4.6.4

4.6.3 Profitability Classification Summary

To interpret the real-world scheduling implications of the model’s predictions, a profitability-based
evaluation framework was applied. Each predicted duration was compared to its actual
counterpart and categorized as Excess (prediction >5% longer), Shortfall (prediction >5% shorter),
or Acceptable (within +5%). Within the Acceptable range, further refinement distinguished
between Profitable (0 to -5%) and More Profitable (<-5%) predictions. Figs. 5 (a-c) and Figs. 6 (a-
c) present these classifications for start-date-based and activity-specific predictions, respectively,
across the three complexity tiers.

4.6.3.1 Start Date Based Predictions

For start-date-based predictions shown in Fig. 5 (a), low-complexity projects (P1C1-P2C1)
revealed a perfectly balanced outcome: 40% of predictions were Excess and another 40% were
Shortfall, with only 20% falling in the Acceptable range. While this highlights limitations in
predicting total project timelines from the start date alone, the fact that prediction errors were
evenly distributed suggests there was no systemic bias toward over- or underestimation in these
simpler projects.

In Fig. 5 (b), for medium-complexity projects (P1C2-P2C2), start-date-based predictions became
less reliable. A total of 50% of predictions fell under the Shortfall category, and 33.3% were Excess,
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leaving only 16.7% as Acceptable. This trend indicates a notable increase in prediction dispersion,
which may be attributed to variability in part sequencing or minor overlaps in mid-stage activities.

The pattern continued in Fig. 5 (c) for high-complexity projects (P1C3-P2C3), where the model's
prediction quality further degraded. Half the predictions were Excess, and 37.5% were Shortfall,
with a mere 12.5% falling within the acceptable margin. This steep drop in predictive reliability
highlights the challenge of accurately estimating total project timelines in projects characterized
by component diversity, nonlinear production flows, and extended finishing operations.
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SWMe
Acceptable Profit
Some (between -5% to 5%)
SGMe
SPMe
SFPMe

-50.00% 0.00% 50.00%  100.00%  150.00%  200.00%

Fig. 5 (a). SD Based Forecasts for Low-
Complexity (P1C1 vs. P2C1), including
excess, shortfall, and profitability ranges
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Fig. 5 (c). SD Based Forecasts for High-
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Fig. 6 (b). AD Forecasts for Medium-
Complexity (P1C2 vs. P2C2), including
excess, shortfall, and profitability ranges
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Fig. 5 (b). SD Based Forecasts for Medium-
Complexity (P1C2 vs. P2C2), including
excess, shortfall, and profitability ranges
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4.3.6.2 Activity Specific Predictions

By contrast, the activity-specific classification results shown in Fig. 6 (a) for low complexity
projects in P1C1-P2C1 projects were markedly better. All fabrication activities except for a few
painting stages achieved 100% Acceptable classification, with no instances of Excess or Shortfall.
For example, Cutting (PCA) and Splicing (PSA) were fully consistent, while even more variable tasks
like Painting (PPA) only registered a 20% Shortfall. This confirms that for low-complexity jobs,
activity-wise modeling captures fabrication durations with exceptional accuracy.

In medium-complexity projects (P1C2-P2C2), the results in Fig. 6 (b) reaffirm the advantage of
activity-specific forecasting. While Painting (PPA) showed a 16.7% Shortfall, and Painting Median
(PPMe) had both Excess and Shortfall at 16.7% each, all other fabrication stages maintained 100%
Acceptable classification. Profitable and More Profitable segments were well-balanced, indicating
that even under increased part variety and intermediate complexity, the model retains practical
usefulness at the activity level.

Finally, in high-complexity projects (P1C3-P2C3), Fig. 6 (c) shows some dispersion but still
maintains remarkable control compared to the corresponding start-date-based predictions. Most
core fabrication tasks such as Cutting (PCA), Splicing (PSA), SAW Welding (PSWA), and Primer
(PFPA) showed no Excess or Shortfall and remained within the Acceptable range. Even in the more
variable stages like Painting (PPA) and its median values (PPMe), only 12.5% fell into the Shortfall
range, while the rest were well-distributed between Profitable and More Profitable. These
comparisons establish that while overall project duration forecasts tend to suffer from growing
variance as complexity increases, activity-level prediction classification is consistently stable,
accurate, and informative across all complexity tiers. This reinforces the conclusion that micro-
level prediction granularity better accommodates structural variation and operational uncertainty
inherent in complex Pre-Engineered Building projects.

4.6.4 Profitability Trend Analysis

To gain insight into how predictive performance shifts with increasing project complexity, a trend-
based analysis of classification outcomes was conducted. Figs. 7 and 8 summarize the proportion
of predictions falling into Excess, Shortfall, and Acceptable Profit categories across the three
classification groups: P1C1-P2C1 (low), P1C2-P2C2 (medium), and P1C3-P2C3 (high complexity).

Trend Analysis - Production Prediction (From SD) Trend Analysis - Production Prediction (Specific Activity)
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Acceptable Profit (between -5% to 5%) Acceptable Profit (between -5% to 5%)
100% 100%
- S5 5% 99%)
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Type vs Combinations Type vs Combinations
Fig. 7. Profitability Trend analysis of Fig. 8. Profitability trend analysis of
production (From SD) production (Activity Based)

In Fig. 7, which visualizes the trends for start-date-based predictions, a clear decline in predictive
reliability is observed as complexity increases. In the low-complexity group (P1C1-P2C1),
Acceptable predictions accounted for 92%, with only 2% Excess and 6% Shortfall. This
demonstrates strong schedule-aligned forecasting in standardized fabrication environments.
However, in the medium-complexity group (P1C2-P2C2), Acceptable classification slightly
dropped to 90%, while Excess and Shortfall rose to 3% and 7%, respectively. The decline becomes
much steeper in the high-complexity group (P1C3-P2C3), where Acceptable predictions fall to just
71%, and Excess and Shortfall rise sharply to 17% and 12%, respectively. This pattern indicates

15



Raja S et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx

the compounding effects of fabrication variability and inter-task dependencies on the model’s
cumulative timeline accuracy.

Conversely, Fig. 8, which illustrates the trend for activity-specific predictions, presents a striking
contrast. In low-complexity projects, the model achieved 98% Acceptable predictions, with only
2% Shortfall and no Excess. In medium complexity, Acceptable predictions remained constant at
98%, while Excess and Shortfall slightly increased to 1% and 2%, respectively. Remarkably, in high-
complexity projects, Acceptable classification further improved to 99%, with Shortfall dropping to
1% and no Excess predictions recorded. These trends reinforce a key operational insight: as project
complexity increases, start-date-based predictions become increasingly volatile and prone to
deviation, while activity-level predictions maintain high accuracy and profitability alignment. The
ability of stage-focused modeling to isolate task durations independently of project-wide variability
makes it a more robust strategy for forecasting in complex Pre-Engineered Building (PEB)
fabrication workflows.

4.6.5 Profitability Consolidation Across Prediction Strategies

To consolidate the classification analysis and highlight the consistency of the predictive model
across varying complexity tiers, Figs 8 and 9 present grouped bar charts showing the overall profit
classification trends for both start-date-based and activity-specific prediction strategies. In Fig. 9,
which illustrates results from start-date-based predictions, the overall profitability classification
(i.e.,, combined share of Profitable and More Profitable predictions) shows a declining trend as
project complexity increases. In the low-complexity group (P1C1-P2C1), the model achieved a
strong 98% profitability classification, which slightly declined to 97% for medium-complexity
projects (P1C2-P2C2). However, for the high-complexity group (P1C3-P2C3), profitability
dropped notably to 83%, confirming that aggregate predictions become more susceptible to
deviation as fabrication workflows become structurally diverse and less deterministic.

® PiC1&P2C1 @ PiC2 &P2C2 P1C3 & P2C3 ® P1C1&P2C1 @ P1C2&P2C2 P1C3 & P2C3
Fig. 9. Overall profit analysis for production Fig. 10 Overall profit analysis for
(From SD) production (Activity Based)

In contrast, Fig. 10, which summarizes profitability classification for activity-specific predictions,
demonstrates remarkable stability and robustness across all complexity levels. The model
consistently achieved 100% profitability classification for low, medium, and high-complexity
projects alike. This means that every activity-level prediction—regardless of project scale or
structural heterogeneity—remained within the Profitable or More Profitable classification zones.

These findings visually reinforce the earlier statistical and trend-based conclusions: activity-
specific modeling ensures highly profitable and stable forecasts, even in projects characterized by
fabrication variability, concurrent workflows, and extended finishing durations. On the other hand,
start-date-based predictions, while initially strong, tend to degrade under project complexity,
underscoring the limitations of aggregated forecasting models for detailed production planning.

5. Discussion

The predictive performance analysis of this study provides both theoretical and empirical
validation for the structured application of machine learning in real-time fabrication forecasting
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for PEB. A critical comparison between start-date-based and activity-specific regression models
has revealed several important insights into how fabrication workflows, model architecture, and
feature behaviors interact under varying degrees of project complexity.

An important methodological consideration in this study was the relatively small sample size
within each classification subset. While small data regimes typically risk overfitting, the results
showed close agreement between mean and median RMSE values, and profitability classifications
were balanced across Excess and Shortfall categories. These outcomes suggest that the model did
not memorize isolated instances but generalized patterns effectively. The use of bootstrap
aggregation within Random Forest, complexity-aware stratification, and hyperparameter tuning
collectively contributed to this resilience.

The stark divergence in error behavior particularly in Root Mean Square Error (RMSE) and Mean
Squared Error (MSE) between start-date-based predictions and activity-specific predictions
underscores the nonlinear error propagation inherent in cumulative timeline modeling. In high-
complexity projects (P1C3-P2C3), aggregated predictions exhibited both amplified residuals and
greater variance, suggesting model strain under feature interactions that are not easily
decomposable. This is a well-observed behavior in ensemble tree-based models like Random
Forests, which excel at isolating decision boundaries for localized predictions (e.g., specific
activities), but become less interpretable and less accurate when tasked with predicting long, path-
dependent sequences.

In contrast, the task-specific modeling approach constrained the regression task to independent,
bounded intervals (e.g., welding duration, painting lead time), which allowed the Random Forest
algorithm to operate with higher granularity and lower cumulative variance. The predictive fidelity
across even high-complexity projects with significant concurrent tasks and variability in
fabrication sequencing reinforces the ensemble model's capacity to effectively partition feature
space when provided with stage-isolated data.

From a feature behavior standpoint, the engineered inputs particularly the statistical descriptors
such as stage-level mean, median, and mode were key contributors to model generalization. These
summary statistics act as stabilizing factors in the presence of noise and outliers. In addition, the
classification-based stratification of the dataset into P1C1-P2C3 groups significantly improved
model bias-variance trade-off by ensuring homogeneity within training samples. This stratification
aligns with complexity theory in project scheduling, where performance is known to degrade in
heterogeneous or poorly segmented datasets.

The classification performance summary, visualized through Fig. 4 to Fig. 10, further reinforces the
limitations of cumulative prediction models under fabrication variability. The downward trend in
profitability and acceptable prediction rates for start-date-based models highlights an exponential
sensitivity to component diversity and flow disruptions. Meanwhile, the flat or improving trend in
activity-level classifications demonstrates the superior scalability of stage-based models. Notably,
no excess classifications were recorded in activity-level predictions for high-complexity projects—
a rare behavior in predictive modeling that indicates excellent overfit control and structural
resilience.

These findings have implications for both model design and production control. First, they validate
the use of ensemble regressors with classification-aware preprocessing for industrial applications
involving multistage workflows. Second, they show that disaggregating predictive tasks across
operational stages provides not only statistical benefits (e.g., reduced error, variance), but also
operational advantages (e.g., task-specific insights, bottleneck detection). Lastly, the introduction
of a profitability-aware classification framework represents a methodological advancement,
aligning predictive accuracy with actionable performance categories rooted in cost, schedule
tolerance, and delivery reliability.

This study has several limitations that should be acknowledged. First, the dataset comprises 34
completed projects, which, while carefully preprocessed and stratified, remains relatively small
and may limit the generalizability of the predictive models to other PEB projects with different
characteristics. Second, model validation was performed using historical data from past projects,
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without external prospective validation. These limitations restrict the extent to which the models’
predictive accuracy can be assured in new or evolving project contexts. Future research should aim
to augment the dataset with additional and more diverse projects and validate the approach
prospectively to strengthen robustness and applicability.

5.1 Break-Even Point (BEP)-Based Evaluation of Fabrication Efficiency

To gain a clearer understanding of how individual fabrication stages contribute to overall schedule
variability, we evaluated performance using a Break-Even Point (BEP) framework. In this context,
the BEP refers to the typical (median) number of days a given process takes across all recorded
parts. By design, the median serves as a more robust baseline than the mean, as it reduces
sensitivity to extreme outliers and rare delays.

Each fabrication stage was assessed by comparing its mean duration to its BEP. When the mean
exceeded the BEP, the stage was flagged for review, with the degree of deviation used to classify
the process as efficient, marginally overrun, or significantly delayed. This evaluation helps establish
which stages are consistently under control and which ones may require deeper analysis or
operational adjustment.

Table. 5 Fabrication Stage Performance Compared to Break-Even Point

No. of BEP (Median Mean Deviation

Fab Stage Parts Days) Days from BEP Efficiency Status
1. Cutting 31,547 1 1 0 Efficient
2. Splicing 9,473 1 1 0 Efficient
3. Built-Up 3,773 2 2 0 Efficient
Section
4. SAW Welding 3,773 2 4 +2 Slight Overrun
5. Fit-up 24,853 2 3 +1 Slight Overrun
6. Welding 22,473 2 2 0 Efficient
7. Drilling 7,670 1 2 +1 Slight Overrun
8. Cl‘?‘""“?“g & 31,547 2 4 +2 Moderate Delay
Grinding
9. Primer 31,547 2 14 +12 Significant Delay
10. Finish Paint 30,840 1 1 0 Efficient

The analysis and the findings are summarized in Table 5 and infers that the majority of fabrication
stages particularly Cutting, Splicing, Welding, and Finish Paint operated at or below their BEP,
suggesting strong control and consistent execution. A few stages, including Fit-up, SAW Welding,
and Drilling, showed mild deviations (+1 to +2 days), which may be acceptable given typical
production fluctuations. However, two stages stood out as clear bottlenecks. Primer application
averaged 14 days compared to a BEP of 2, representing a substantial delay that could impact
downstream scheduling. Cleaning and Grinding also exceeded its BEP by two full days on average,
suggesting a need for either process streamlining or capacity realignment. These findings support
the motivation for stage-level modeling in this study. By identifying where delays cluster and
quantifying how far actual durations deviate from standard expectations, we can target high-
variance stages for enhanced machine learning-based forecasting and optimization. Moreover,
BEP-based classifications provide a domain-aligned reference point that can be incorporated into
profitability-aware ML evaluation metrics. From a theoretical perspective, this study confirms the
value of treating time-to-completion not as a monolithic regression target, but as a composition of
bounded sub-tasks influenced by domain-specific complexity. Practitioners and researchers in
smart manufacturing and construction informatics can extend this approach to integrate
uncertainty quantification, real-time sensor feedback, or reinforcement learning-based
rescheduling in future work.
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Table: 6 Comparative Summary of Start-Date-Based (SD) and Activity-Based (AD) Forecasting
Results across Complexity Tiers, including Error Metrics, Profitability Rates, and Break-Even
Status

SD AD SD AD SD Based AD Based

Complexity = Based Based Based N e Break Even

Tier RMSE RMSE  MSE (1::5:) me;{i‘;‘hty mellgtz‘hty Status
(Avg) (Avg) (Avg)

P1C1-P2Cl 2.12 1.85 4.49 3.98 98 100 Achieved
(Low)

P1C2—.P2C2 2.5 2.14 6.25 5.11 97 100 Achieved

(Medium)

P1C3._P2C3 3.1 2.72 9.61 7.39 83 100 Achieved
(High)

To provide a consolidated view of both technical accuracy and business alignment, Table 6
summarizes start-date-based (SD) and activity-based (AD) forecasting results across all complexity
tiers. The table integrates RMSE, MSE, profitability rates, and break-even status into a single
comparative framework, highlighting the consistent advantage of activity-level predictions. This
consolidated comparison is provided in Table 6, shows activity-based (AD) predictions consistently
yield lower RMSE and MSE values across all complexity tiers compared to start-date-based (SD)
predictions. Notably, while SD-based profitability rates decline with higher project complexity
(98% — 97% — 83%), AD-based predictions maintain a 100% profitability rate across all tiers.
Furthermore, the break-even status is achieved in every case, underscoring the robustness of the
proposed framework.

6. Conclusion

This study developed a machine learning-driven approach for predicting fabrication durations in
Pre-Engineered Building (PEB) projects using real-time production data from a structured PRED
system. Leveraging an ensemble Regressor (Random Forest), the model was trained on a stratified
dataset segmented by project complexity and structural configuration (P1C1-P2C3). Input features
included total tonnage, number of parts, and statistical descriptors (mean, median, mode) of task
durations, engineered from part-level fabrication records. Two target prediction strategies were
evaluated start-date-based and activity-specific. The former suffered increased RMSE and MSE as
project complexity rose, while the latter maintained low error rates and exceptional prediction
consistency. Specifically, activity-level models achieved over 99% accuracy in profitability-aligned
predictions across all complexity tiers, with no Excess in high-complexity projects. These results
confirm that granular, task-isolated modeling significantly improves forecast robustness,
especially under conditions of sequencing variability and concurrent task execution.

The integration of group-aware preprocessing, ensemble learning, and profitability-based
evaluation establishes a scalable and interpretable solution for predictive scheduling in industrial
fabrication. By aligning forecast accuracy with profitability classes—Profitable, Acceptable, and
Excess—the framework translates technical predictions into direct financial implications. This
enables fabrication managers to anticipate schedule risks, detect bottlenecks early, and optimize
resource allocation, ultimately strengthening competitiveness in cost- and time-sensitive markets.

Technically, the results highlight the value of statistical feature engineering in stabilizing
predictions, as descriptors such as mean and median mitigated the influence of noise and outliers.
The classification-based stratification further ensured balanced learning across projects of
differing complexity, minimizing bias-variance trade-offs. Together, these design choices explain
the framework’s superior performance compared to conventional approaches.

The demonstrated robustness of activity-level forecasts provides actionable insights for PEB firms
by reducing uncertainty in project timelines and profitability planning. This makes the framework
a valuable decision-support tool for managers seeking to balance operational efficiency with
financial performance in competitive fabrication environments. Future work may incorporate

19



Raja S et al. / Research on Engineering Structures & Materials x(x) (xxxx) xx-xx

repeated cross-validation, regularization techniques, or blended ensemble approaches to further
reinforce generalization.

While the results are promising, further research may expand on this foundation. Future work
could explore repeated cross-validation, regularization techniques, or blended ensemble
approaches to strengthen generalization. Integration with [oT-enabled real-time feedback systems
may enable adaptive rescheduling under disruptions, while reinforcement learning or probabilistic
modeling could improve handling of uncertainty in highly variable projects. Finally, extending the
framework to include supply chain and resource allocation considerations would allow for an even
more holistic view of PEB project planning.
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