Recieved:

18/10/2016

Accepted:

05/05/2017

Page: 

103

125

doi:

http://dx.doi.org/10.17515/resm2016.83me1018

Views:

3892

Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via stokes’ transformation technique

Moein Hosseini1, Fatemeh Farhatnia1, Soheil Oveissi2

1Mechanical Engineering Faculty, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Isfahan, Iran
2Department of Mechanical Engineering, Islamic Azad University, Najafabad, Isfahan, Iran

Abstract

The present study investigates buckling in functionally graded material (FGM) beams when exposed to a temperature rise. The proposed FGM beams have arbitrary edge supports that are modeled by rotational and translational springs. The mechanical properties are assumed to vary continuously across the thickness direction according to a simple four-parameter power law. To obtain the critical value of temperature, the governing equilibrium equations are extracted based on Timoshenko beam theory, using the assumption of Von-Karman nonlinearity for the physical neutral surface concept. The equations are further solved by Fourier series expansion via Stokes’ transformation technique. Numerical examples are provided to demonstrate the accuracy and reliability of the proposed method. The influence of two models of metal-ceramic distribution across the thickness (symmetrical and unsymmetrical ones) on the response of the beam in thermal buckling of FG beam is investigated. It is observed that, the critical buckling temperature rises more for symmetrical model of FGM beam with respected to unsymmetrical one. Also, increasing the translational and rotational spring coefficient makes the beam stiffer; consequently, the critical buckling temperature is increased. © 2017 MIM Research Group. All rights reserved.

Keywords

Thermal buckling, Timoshenko beam theory, Functionally graded material, Stokes’ transformation

Cite this article as: 

Hosseini M, Farhatnia F, Oveissi S. Functionally graded Timoshenko beams with elasticallyrestrained edge supports: thermal buckling analysis via stokes’ transformation technique. Res. Eng. Struct. Mat., 2018; 4(2): 103-125.
Share This Article
LinkedIn
X
Facebook
journal cover
News & Upcoming Events