RESM

    

Submission & tracking

For submitting new manuscripts or tracking the existing ones, login or register to the Submission Tracking System.


LOGIN / REGISTER

Upcoming events

PARTNERS




Special issue

Special Issue Proposals:

The journal of RESM is open to proposals for special issues on emerging related topics. More info is here.

Research Article

Internal force transfer in segmental RC structures

Seymur Bashirzade, Okan Ozcan, Izzet Ufuk Cagdas

Department of Civil Engineering, Akdeniz University, Konyaaltı, Antalya, 07058, Türkiye

Keywords

Abstract


Segmental structures;

 Segmental beams; 

Intersegmental joints;

 Hollow circular beams; 

DIANA



The primary objective of this numerical study is to provide a finite element (FE) analysis approach for segmental structures. The study was conducted using a hollow circular segmental structure model capable of adequately imitating real structural behavior and deals with the effect of varying number of segments on structural performance. In order to verify the FE procedure conducted by DIANA software, comparisons are made with the acquired numerical results and the results taken from previous experimental studies for 1 reinforced concrete (RC) beam, 2 post-tensioned (PT) beam, and 3 segmental post-tensioned beams (SPT). For the considered cases, 1D line, 2D shell, and 3D solid FE models are made, and it is found out that the 3D solid model with interface elements yields the most plausible results. Further, the FE model was constructed to accurately predict segment joint behavior concerning the relationship between the number of segments, concrete compressive strength, and the width of the openings at the segment joints up to collapse. In this study, a hollow circular segmental structure model is utilized to mimic real structural behavior, presenting a novel perspective on internal force transfer mechanisms within segmental structures. Moreover, the FE model is tailored to accurately predict segment joint behavior, elucidating the intricate relationship between the number of segments, concrete compressive strength, and the width of openings at segment joints up to collapse. In addition to presenting a robust numerical analysis framework, this study contributes novel insights into the complex interplay between segmental geometry, material properties, and structural behavior, thus advancing the state-of-the-art in segmental structural design. Thus, a modular construction methodology is proposed for segmental beam type structures ensuring safety, efficiency, and flexibility in challenging load conditions.

© 2024 MIM Research Group. All rights reserved.

LATEST News

20/08/2024 Engineering Village Ei Compendex Index: Journal of Research on Engineering Structures and Materials has been accepted for inclusion in the Ei Compendex index. Ei Compendex, formerly known as the Engineering Index, is one of Elsevier's flagship databases, renowned for providing comprehensive and reliable content in the field of engineering dating back to 1884. This inclusion will enhance the visibility of our journal and further support the dissemination of high-quality research.


20/04/2024 Collaboration for HSTD-2024Editorial Board of our journal and Organizing Committee of the III. International Conference on High-Speed Transport Development (HSTD) have agreed to collaborate. Extended versions of the selected papers from the conference will be published in our journal. For more see Events.

20/04/2024 Collaboration for DSL2024-SS1Editorial Board of our journal and Organizing Committee of the DSL2024 Fluid Flow, Energy Transfer & Design (SS1) have agreed to collaborate. Extended versions of the selected papers from the session will be published in our journal. For more see Events. .



(More details of the news may be given in the News section)


For more see News...

LATEST AWARDS


2023 Reviewer Awards:

Please, visit Reviewer Awards section for the winners of the 2022 RESM reviewer awards.



2023 Best Paper Award:

The paper authored by Ferzan Fidan, Naim Aslan, Mümin Mehmet Koç entitled as “Morpho-structural and compressive mechanical properties of graphene oxide reinforced hydroxyapatite scaffolds for bone tissue applications” is awarded.



2023 Most Cited Paper Award:

The paper authored by Ercan Işık, Ehsan Harirchian, Hüseyin Bilgin, Kirti Jadhav entitled as “The effect of material strength and discontinuity in RC structures according to different site-specific design spectra" is awarded.


abstractıng/ındexıng

  • Asos Indeks
  • CiteFactor
  • Cosmos
  • CrossRef
  • Directory of Research Journal Indexing
  • Ei Compendex (Elsevier)
  • Engineering Journals (ProQuest)
  • EZB Electronic Journal Library
  • Global Impact Factor
  • Google Scholar
  • InfoBase Index
  • International Institute of Organized Research (I2OR)
  • International Scientific Indexing (ISI)
  • Materials Science & Engineering Database (ProQuest)
  • Open Academic Journals Index
  • Publication Forum
  • Research BibleScientific Indexing Service
  • Root Indexing
  • Scopus
  • Ulakbim TR Index (Tubitak)
  • Universal Impact Factor
  • Scope Database




MIM RESEARCH GROUP

©2014. All rights reserved


Contact :

For publication issues

jresm@jresm.net

editor.jresm@gmail.com


For administrative issues:

mim@mimrg.net


Postal Address:

Kemal Öz Mah. 3. Bilgi Sok., 4A, No:13 Usak/Turkey



Last update

of this page:


30.10.2024

(dd.mm.yyyy)


Go to main page for last version