RESM

    

Submission & tracking

For submitting new manuscripts or tracking the existing ones, login or register to the Submission Tracking System.


LOGIN / REGISTER

Open for NEW members

Our journal is open for new team member applications in various positions, such as: editor, editorial board member, copyeditor, language editor. More info is here.

Special issue

Special Issue Proposals:

The journal of RESM is open to proposals for special issues on emerging related topics. More info is here.

uPCOMING events


ICWET'21  

         

ULIBTK 2021

PARTNERS




Research Article

Self-powered microfluidic device for the colorimetric detection of lithium via sequential reagent mixing

Angelo Traina1,2, Han J.G.E. Gardeniers1, Burcu Gumuscu1,3,4

1Mesoscale Chemical Systems Group, University of Twente, Enschede, The Netherlands

2Department Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy

3BioInterface Science Group, Eindhoven University of Technology, Eindhoven, The Netherlands

4Biosensors and Devices Group, Eindhoven University of Technology, Eindhoven, The Netherlands

Keywords

Abstract




Lithium detection;

 Colorimetric detection; 

Microfluidic circuits; 

Finger-driven pump.



Continuous monitoring of lithium concentration fluctuations in blood plasma is essential for patients with bipolar disorder and manic depression since lithium has a low therapeutic index. While blood plasma concentrations between 0.4 and 1.0 mmol/L are considered to be in the therapeutic zone, the concentrations exceeding 1.3 mmol/L are toxic to the patients. Most of the point-of-care devices for lithium monitoring have bulky peripherals and require extensive operator handling, yet simple-to-use devices are in demand for 2–5% of the worldwide population receiving lithium therapy. This paper aims to develop a self-contained microfluidic device to run colorimetric lithium assays without the need for dedicated personnel or equipment. In the developed microchip, the assay reagents are mixed in sequential order via custom-designed microfluidic capillary circuits with the aid of a finger pump. The operation of the finger pump was characterized mathematically and demonstrated experimentally. The finger-driven pump achieved 45.9 mm/s flow velocity when 8.3 µL liquid was placed in a 160 mm long channel with 200 µm height, as such rapid triggering was a requirement for the colorimetric lithium test. The final device is able to quantify the lithium concentrations between 0 and 2.0 mM using a smartphone camera. The detection limit of this microchip was calculated as 0.1 mM. This device presents a portable alternative to on-site quantitative detection techniques with bulky and expensive tools.

© 2021 MIM Research Group. All rights reserved.

LATEST News


15/03/2021 Collaboration for ICWET'21: Editorial Board of our journal and Organizing Committee of the6th International Conference on Welding Technologies and Exibition (ICWET’21) have agreed to collaborate. Extended versions of the selected papers from the conference will be published in our journal. For more see Events.


11/02/2021 Collaboration for ULIBTK 2021: Editorial Board of our journal and Organizing Committee of the 23. Congress on Thermal Science and Technology (ULIBTK 2021) have agreed to collaborate. Extended versions of the selected papers from the conference will be published in our journal. For more see Events.


31/12/2020 Most Cited Award: 

According to the Editorial Board evaluation, the paper authored by Nelson Batista, Rui Melicio, Victor Mendes entitled as “Darrieus vertical axis wind turbines: methodology to study the self-start capabilities considering symmetric and asymmetric airfoils" is awarded the 2020 Most Cited Paper Award of Research on Engineering Structures and Materials (RESM).


31/12/2020 Best Paper Award:

According to the Advisory Board decision, the paper authored by Marcelo Mesquita do Amaral, Matheus Wanglon Ferreira and Mauro de Vasconcellos Real entitled as “A simplified method for analysis of reinforced concrete beams exposed to fire situation” is awarded the 2020 Best Paper Award of Research on Engineering Structures and Materials (RESM).


02/11/2020 Indexed by SCOPUS: We are informed that our journal is accepted to be included in the SCOPUS Index. See news for more info.


(More details of the news may be given in the News section)


For more see News...

LATEST AWARDS


2020 Most Cited Paper Award:

The paper authored by Nelson Batista, Rui Melicio, Victor Mendes entitled as “Darrieus vertical axis wind turbines: methodology to study the self-start capabilities considering symmetric and asymmetric airfoils" is awarded the


2020 Best Paper Award:

The paper authored by Ahsen Ünal, Işıl Özer, Melek Erol Taygun, Sadriye Küçükbayrak entitled as “Fabrication and in-vitro evaluation of copper doped bioactive glass/polymer composite scaffolds for bone tissue engineering” is awarded the 


abstractıng/ındexıng

  • Asos Indeks
  • CiteFactor
  • Cosmos
  • CrossRef
  • Directory of Research Journal Indexing
  • Engineering Journals (ProQuest)
  • EZB Electronic Journal Library
  • Global Impact Factor
  • Google Scholar
  • InfoBase Index
  • International Institute of Organized Research (I2OR)
  • International Scientific Indexing (ISI)
  • Materials Science & Engineering Database (ProQuest)
  • Open Academic Journals Index
  • Publication Forum
  • Research BibleScientific Indexing Service
  • Root Indexing
  • Scopus
  • Ulakbim TR Index (Tubitak)
  • Universal Impact Factor




MIM RESEARCH GROUP

©2014. All rights reserved

Contact :

jresm@jresm.net

editor.jresm@gmail.com


Postal Address:

Kemal Öz Mah. 3. Üniversite Sok. Erdoğan Apt. 70/21 Usak/Turkey



Last Update:

17.06.2021

(dd.mm.yyyy)