RESM

    

Submission & tracking

For submitting new manuscripts or tracking the existing ones, login or register to the Submission Tracking System.


LOGIN / REGISTER

Special issue

Special Issue Proposals:

The journal of RESM is open to proposals for special issues on emerging related topics. More info is here.

UPCOMING events

PARTNERS




Research Article

Mechanical and durability characterization of hybrid fibre reinforced green geopolymer concrete

Kadarkarai Arunkumar1Muthiah Muthukannan1Arunachalam Sureshkumar1, Arunasankar Chithambarganesh2, Rangaswamy Kanniga Devi R3

1Department of Civil Engineering, Kalasalingam Academy of Research and Education, India

2Department of Civil Engineering, Sree Vidya Nikethan Engineering College, Tirupati, India

3Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education, India

Keywords

Abstract


Green Geopolymer Concrete;


Wood Waste Ash;

 

Water Absorption;

 

Electrical Resistivity; 


Waste Utilization

Finding a suitable waste utilization approach to produce a cleaner environment is the most crucial aspect globally. Geopolymer is the most promising alternate for cement and source for major waste utilization. Disposal of waste rubber tires is a challenging task for the cleaner environment. Hence, abundant wastes, which create environmental pollution, such as wood waste ash and waste rubber, are used to invent the green geopolymer concrete in this research. The geopolymer is uncomfortable with carrying impact energy, ductility, and energy absorption. Fibre addition could enhance the above properties. Waste wood ash is replaced by 30 percent with fly ash. This research assesses the individual effect of adding polypropylene and rubber fibre by 0, 0.5%, 1%, 1.5%, and 2% of volume fractions. In addition, the effects of fibre hybridization on the mechanical and durability characteristics of green geopolymer concrete have also been analyzed. The study finds the maximum performance in mechanical and durability behaviors with the mix having 0.5% PP and 0.5% rubber. The microstructure characteristics are also assessed using SEM for understanding the phase development in green geopolymer concrete. The research hypothesis proves that an intellectual approach is made to utilize the waste materials such as rubber and waste wood ash in the invention of green geopolymer concrete, which can help to eliminate the environmental impact and can act as a sustainable concrete.

© 2021 MIM Research Group. All rights reserved.

LATEST News


10/11/2021 Collaboration for IMSTEC2021: Editorial Board of our journal and Organizing Committee of the 6th International Conference on Material Science and Technology (IMSTEC2021) have agreed to collaborate. Extended versions of the selected papers from the conference will be published in our journal. For more see Events


15/03/2021 Collaboration for ICWET'21: Editorial Board of our journal and Organizing Committee of the6th International Conference on Welding Technologies and Exibition (ICWET’21) have agreed to collaborate. Extended versions of the selected papers from the conference will be published in our journal. For more see Events.


11/02/2021 Collaboration for ULIBTK 2021: Editorial Board of our journal and Organizing Committee of the 23. Congress on Thermal Science and Technology (ULIBTK 2021) have agreed to collaborate. Extended versions of the selected papers from the conference will be published in our journal. For more see Events.



(More details of the news may be given in the News section)


For more see News...

LATEST AWARDS


2020 Most Cited Paper Award:

The paper authored by Nelson Batista, Rui Melicio, Victor Mendes entitled as “Darrieus vertical axis wind turbines: methodology to study the self-start capabilities considering symmetric and asymmetric airfoils" is awarded the


2020 Best Paper Award:

The paper authored by Ahsen Ünal, Işıl Özer, Melek Erol Taygun, Sadriye Küçükbayrak entitled as “Fabrication and in-vitro evaluation of copper doped bioactive glass/polymer composite scaffolds for bone tissue engineering” is awarded the 


abstractıng/ındexıng

  • Asos Indeks
  • CiteFactor
  • Cosmos
  • CrossRef
  • Directory of Research Journal Indexing
  • Engineering Journals (ProQuest)
  • EZB Electronic Journal Library
  • Global Impact Factor
  • Google Scholar
  • InfoBase Index
  • International Institute of Organized Research (I2OR)
  • International Scientific Indexing (ISI)
  • Materials Science & Engineering Database (ProQuest)
  • Open Academic Journals Index
  • Publication Forum
  • Research BibleScientific Indexing Service
  • Root Indexing
  • Scopus
  • Ulakbim TR Index (Tubitak)
  • Universal Impact Factor




MIM RESEARCH GROUP

©2014. All rights reserved

Contact :

jresm@jresm.net

editor.jresm@gmail.com


Postal Address:

Kemal Öz Mah. 3. Üniversite Sok. Erdoğan Apt. 70/21 Usak/Turkey



Last Update:

24.11.2021

(dd.mm.yyyy)