Recieved:

18/01/2020

Accepted:

12/06/2020

Page: 

157

171

doi:

http://dx.doi.org/10.17515/resm2020.176na0118

Views:

3047
Cited 4 times

Impact of multi-walled carbon nanotube and graphene oxide on abrasive wear performance of polypropylene

Salih Hakan Yetgin1

1Department of Mechanical Engineering, Kütahya Dumlupınar University, Turkey

Abstract

In this study, the abrasive wear behavior of multi-walled carbon nanotube (MWCNT) and graphene oxide (GO) filled polypropylene (PP) nanocomposites without using compatibiliser were investigated. The effects of material type, sliding distance, and emery paper number on the abrasive wear of PP nanocomposites were investigated by adopting a statistical approach. The tribological tests were performed in dry condition using pin-on-disc at 1.0m/s sliding speed and 10N load. The optimization of signal-to-noise ratio (S/N) and degree of significance of the control variables to minimize the wear volume and coefficient of friction was carried out. As a result of the study, wear volume and coefficient of friction increased with increasing sliding distance, while decreased with increasing emery paper number for all tested materials. The coefficient of friction of the MWCNT and GO filled PP nanocomposites decreased by 19% and 23% compared to unfilled PP polymer, respectively. GO filled PP nanocomposites was found to be approximately 95% less wear volume than MWCNT filled PP nanocomposites. The minimized coefficient of friction and wear volume was obtained at 0.3%wt GO filled PP nanocomposite with the parameters of 100m sliding speed and 1200 grid emery paper number with a value of 0.2716 and 3.07 mm3, respectively.

Keywords

Graphene oxide; Multi-walled carbon nanotube; Taguchi analysis; Tribological properties; Coefficient of friction
Cited 4 times in the last 5 years and 4 times in total in articles indexed in Scopus.

Cite this article as: 

Yetgin S H. Impact of multi-walled carbon nanotube and graphene oxide on abrasive wear performance of polypropylene. Res. Eng. Struct. Mater., 2021; 7(1): 157-171.
Share This Article
LinkedIn
X
Facebook
journal cover
News & Upcoming Events