Heat exchangers are utilized in a vast region of the process industry for heating and cooling. Long-term operation of heat exchangers results in decreased efficiency due to many problems, such as fouling. Therefore, the object of this research paper is to use three artificial intelligence techniques (feedforward neural networks-multilayer perceptron (FNN-MLP), nonlinear autoregressive networks with exogenous inputs (NARX), and support vector machines (SVM-RBF)) for predicting the fouling resistance in the tube and the shell heat exchanger in the preheating circuit of atmospheric distillation. The results summarize the high training as well as the predictive capacity of the “FFNN-MLP” model for predicting the fouling resistance in the heat exchanger with the highest coefficient of correlation (R = 0.99961) and the lowest root-mean-squared error (nRMSE = 1.0031%) for the testing phase, where the FNN-MLP network is superior to that provided using the SVM model (R = 0.9955 and nRMSE = 3.8652%). All the models of artificial networks and machine learning techniques used in the current work can be used to predict the fouling resistance in heat exchanger data with high accuracy. Despite this, the FNN-MLP model is the preferred model compared with the other proposed models, followed by the NARX model.
Ikram K, Djilali K, Abdennasser D, Al-Sabur R, Ahmed B, Sharkawy AN. Comparative analysis
of fouling resistance prediction in shell and tube heat exchangers using advanced machine
learning techniques. Res. Eng. Struct. Mater., 2024; 10(1): 253-270.