RESM

   

Submission & tracking

For submitting new manuscripts or tracking the existing ones, login or register to the Submission Tracking System.


LOGIN / REGISTER

Special issue

Special Issue Proposals:

The journal of RESM is open to proposals for special issues on emerging related topics. More info is here.

Open to new members

Our journal is open for new team members in various positions, such as: editor, editorial board member, copyeditor, language editor.


For more see link...

LATEST events

PARTNERS




Research Article

Vibration energy harvesting using telescopic suspension system for conventional two-wheeler and EV

Naga Sudha Rani BeharaPutti Srinivasa Rao

Department of Mechanical Engineering, Andhra University College of Engineering(A), Visakhapatnam 530003, Andhra Pradesh, India

Keywords

Abstract





Mechanical Vibrations;


Electric Vehicles;


Energy harvesting;


Telescopic suspension system;


Air pollutants;


Electronic devices

Energy harvesting (EH), a fairly recent technological advancement, is the technique of capturing and converting environmental energy sources—such as load, mechanical vibrations, temperature changes, light energy, wind energy, and so on—into extremely small amounts of power within a specified voltage range. When there is no accessibility to conventional power sources, energy harvesting is employed to power electronic devices. In addition to reducing vibration brought on by road imperfections, an energy-harvesting telescopic shock absorber can collect energy that would otherwise be wasted in suspension vibration. It can act as an energy generator as well as a controlled damper. In order to increase the effectiveness of energy harvesting, this research indicates analyzing and testing a telescopic shock absorber structure that has the benefit of lowering spring vibrations and resisting unneeded spring motion. Focusing on energy harvesting and vibration analysis in shock absorbers is the main objective of this effort. The first telescopic suspension system, which consists of a spring, rack, and pinion, was created using Solid works 20 and then every portion was examined using Ansys Workbench. The spring, rack, and pinion were then practically constructed on a two-wheel bike using a rack and pinion mechanism that was created using 3D printing technology, and testing was then done to determine how much energy was harvested in terms of voltage in relation to the distance (in kilometers) travelled for different loading conditions observed how the voltage can be harvested for conventional two-wheeler and Electric Vehicle. Throughout the observation we found that the vibration harvesting in Electric bike is low compared to Conventional bike. Finally the unwanted vibrations were harvested and boost up, stored in 5V, 12 V rechargeable dead battery which is used to recharge the mobile phone and low power electric devices.

© 2022 MIM Research Group. All rights reserved.

LATEST News


27/12/2022 Reviewer Awards: The winners of 2022 reviewer awards of Research on Engineering Structures and Materials (RESM) are announced. More information can be found at Reviewer Awards section. 


23/12/2022 Best Paper Award: According to the Advisory Board decision, the paper authored by Nitin Kumar, Michele Barbato, Erika L. Rengifo-López and Fabio Matta entitled as “Capabilities and limitations of existing finite element simplified micro-modeling techniques for unreinforced masonry” is awarded the 2022 Best Paper Award of Research on Engineering Structures and Materials (RESM). 

23/12/2022 Most Cited Paper Award:  According to the Editorial Board evaluation, the paper authored by Aykut Elmas, Güliz Akyüz, Ayhan Bergal, Müberra Andaç and Ömer Andaç entitled as “Mathematical modelling of drug release" is awarded the 2022 Most Cited Paper Award of Research on Engineering Structures and Materials (RESM). 


13/04/2022 Fraudulent Emails Impersonating Our Journal: We noticed that some emails are sent to some people impersonating our journal staff as sender and requesting recipients to follow some links. Our journal and staff has nothing to do with these emails and please do not follow the given links. Senders seem to have malicious aims. The emails include a portion of some of our previous emails to the journal users and researchers. This is only to deceive the receiver and make them trust the email. Do not follow any links or perform suspicious actions specified in these emails. Please, check the sender info carefully. Even the sender address or name resembles the journal related words they are different, generally in an easily noticeable way.


(More details of the news may be given in the News section)


For more see News...

LATEST AWARDS


2022 Reviewer Awards:

Please, visit Reviewer Awards section for the winners of the 2022 RESM reviewer awards.


2022 Best Paper Award:

The paper authored by Nitin Kumar, Michele Barbato, Erika L. Rengifo-López and Fabio Matta entitled as “Capabilities and limitations of existing finite element simplified micro-modeling techniques for unreinforced masonry” is awarded the 


2022 Most Cited Paper Award:

The paper authored by Aykut Elmas, Güliz Akyüz, Ayhan Bergal, Müberra Andaç and Ömer Andaç entitled as “Mathematical modelling of drug release" is awarded the


abstractıng/ındexıng

  • Asos Indeks
  • CiteFactor
  • Cosmos
  • CrossRef
  • Directory of Research Journal Indexing
  • Engineering Journals (ProQuest)
  • EZB Electronic Journal Library
  • Global Impact Factor
  • Google Scholar
  • InfoBase Index
  • International Institute of Organized Research (I2OR)
  • International Scientific Indexing (ISI)
  • Materials Science & Engineering Database (ProQuest)
  • Open Academic Journals Index
  • Publication Forum
  • Research BibleScientific Indexing Service
  • Root Indexing
  • Scopus
  • Ulakbim TR Index (Tubitak)
  • Universal Impact Factor
  • Scope Database




MIM RESEARCH GROUP

©2014. All rights reserved

Contact :

jresm@jresm.net

editor.jresm@gmail.com


Postal Address:

Kemal Öz Mah. 3. Bilgi Sok., 4A, No:13 Usak/Turkey



Last update

of this page:

14.09.2023

(dd.mm.yyyy)


Go to main page for last version