RESM

   

Submission & tracking

For submitting new manuscripts or tracking the existing ones, login or register to the Submission Tracking System.


LOGIN / REGISTER

Open to new members

Our journal is open for new team members in various positions, such as: editor, editorial board member, copyeditor, language editor.


For more see link...

PARTNERS




Special issue

Special Issue Proposals:

The journal of RESM is open to proposals for special issues on emerging related topics. More info is here.

Research Article

Performance evaluation of geopolymer concrete using E-waste and M-sand

Pachaivannan Partheeban1, A. R. R. Kalaiyarrasi2, Lakshmi Narayanan. P. B3

1Department of Civil Engineering, Chennai Institute of Technology, Chennai, Tamilnadu, India

2Department of Civil Engineering, St. Peters’ Institute of Higher Education, Chennai, Tamilnadu, India

3Department of Civil Engineering, St. Peters’ College of Engineering and Technology, Chennai, Tamilnadu, India

Keywords

Abstract



Geopolymer Concrete; 

 E-Waste; 

 M-Sand; 

 GGBFS; 

Aggregates;

Strength




This study has been conducted to diminish the carbon footprint of concrete and to assess the performance of geopolymer concrete by completely replacing river sand with Manufactured sand (M-Sand) and Electronic Waste (E-waste). Fly ash and Ground Granulated Blast Furnace Slag (GGBFS) are used in various combinations as a cementitious material in geopolymer concrete. The characteristic strength of geopolymer concrete is obtained by completely replacing fine aggregate with E-waste and M-sand with different percentages. An optimum percentage replacement is arrived at by studying the physical, chemical, and mechanical characteristics. The sizes of the E-waste particles used in this research are between 0.3mm and 0.15 mm and it has a deep colour with a specific gravity of 2.68. Maximum compressive strength of 35.8 N/mm2 on 28 days is achieved for the optimal mix proportion of 80% fly ash, 20% GGBFS, 80% M-sand, and 20% E-waste as fine aggregate. Maximum flexural strength obtained is 6.54 N/mm2 for mix proportion 1 and split tensile strength is 4.75 N/mm2 resulted in mix proportion 2. The use of fly ash, E-waste, and M-sand in geopolymer concrete reduce the environmental pollution and depletion of natural river sand. The results of this experimental study very well match with Indian standards of concrete.

© 2021 MIM Research Group. All rights reserved.

LATEST News


8/12/2023 Special Issue: Embark on a journey of innovation with the journal of Research on Engineering Structures and Materials as we unveil a compelling opportunity for contributors in our upcoming special issue, "Design, Analysis, and Manufacturing of Composite Vehicle Structures." Led by distinguished Guest Editors Liubov Gavva and Oleg Mitrofanov from Moscow Aviation Institute. For more info see the link.


21/10/2023 Journal Submission System Upgrade Completed: We're delighted to announce that our Journal Submission and Tracking System has undergone a significant upgrade, aimed at enhancing your experience. We apologize for the delay, and any inconvenience it may have caused. Here are the key enhancements from a user perspective:

Improvements are designed to make your interaction with our journal smoother and more efficient. Please take the upgraded system for a spin and share your thoughts with us. If you encounter any issues or have questions, please don't hesitate to reach out to our support team.


27/12/2022 Reviewer AwardsThe winners of 2022 reviewer awards of Research on Engineering Structures and Materials (RESM) are announced. More information can be found at Reviewer Awards section. 


(More details of the news may be given in the News section)


For more see News...

LATEST AWARDS


2022 Reviewer Awards:

Please, visit Reviewer Awards section for the winners of the 2022 RESM reviewer awards.


2022 Best Paper Award:

The paper authored by Nitin Kumar, Michele Barbato, Erika L. Rengifo-López and Fabio Matta entitled as “Capabilities and limitations of existing finite element simplified micro-modeling techniques for unreinforced masonry” is awarded the 


2022 Most Cited Paper Award:

The paper authored by Aykut Elmas, Güliz Akyüz, Ayhan Bergal, Müberra Andaç and Ömer Andaç entitled as “Mathematical modelling of drug release" is awarded the


abstractıng/ındexıng

  • Asos Indeks
  • CiteFactor
  • Cosmos
  • CrossRef
  • Directory of Research Journal Indexing
  • Engineering Journals (ProQuest)
  • EZB Electronic Journal Library
  • Global Impact Factor
  • Google Scholar
  • InfoBase Index
  • International Institute of Organized Research (I2OR)
  • International Scientific Indexing (ISI)
  • Materials Science & Engineering Database (ProQuest)
  • Open Academic Journals Index
  • Publication Forum
  • Research BibleScientific Indexing Service
  • Root Indexing
  • Scopus
  • Ulakbim TR Index (Tubitak)
  • Universal Impact Factor
  • Scope Database




MIM RESEARCH GROUP

©2014. All rights reserved

Contact :

jresm@jresm.net

editor.jresm@gmail.com


Postal Address:

Kemal Öz Mah. 3. Bilgi Sok., 4A, No:13 Usak/Turkey



Last update

of this page:

08.12.2023

(dd.mm.yyyy)


Go to main page for last version